Pyrene-excimer probes based on the hybridization chain reaction for the detection of nucleic acids in complex biological fluids.

China Scholarship Council (CSC); ACS; US NIH; China NSFC[20805038]; National Basic Research Program of China[2007CB935603, 2010CB732402]; China National Grand Program on Key Infectious Disease[2009ZX10004-312]; Key Project of Natural Science Foundation of China[90606003]; International Science & Technology Cooperation Program of China[2010DFB30300]; Hunan Provincial Natural Science Foundation of China[10JJ7002]

[1]  Sathyanarayanan V. Puthanveettil,et al.  Pyrene binary probes for unambiguous detection of mRNA using time-resolved fluorescence spectroscopy , 2006, Nucleic acids research.

[2]  M. Masuko,et al.  Optimization of excimer-forming two-probe nucleic acid hybridization method with pyrene as a fluorophore. , 1998, Nucleic acids research.

[3]  Weihong Tan,et al.  Light-switching excimer probes for rapid protein monitoring in complex biological fluids. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Yanrong Wu,et al.  Light‐Switching Excimer Beacon Assays For Ribonuclease H Kinetic Study , 2008, Chembiochem : a European journal of chemical biology.

[5]  M. Trau,et al.  Isothermal detection of DNA by beacon-assisted detection amplification. , 2010, Angewandte Chemie.

[6]  Itamar Willner,et al.  A virus spotlighted by an autonomous DNA machine. , 2006, Angewandte Chemie.

[7]  Robert M. Dirks,et al.  An autonomous polymerization motor powered by DNA hybridization , 2007, Nature Nanotechnology.

[8]  Matt Trau,et al.  Isothermal detection of DNA by beacon-assisted detection amplification. , 2010, Angewandte Chemie.

[9]  Robert M. Dirks,et al.  Triggered amplification by hybridization chain reaction. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[10]  F. Barany Genetic disease detection and DNA amplification using cloned thermostable ligase. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Cuichen Wu,et al.  A general excimer signaling approach for aptamer sensors. , 2010, Biosensors & bioelectronics.

[12]  Weihong Tan,et al.  Pyrene excimer signaling molecular beacons for probing nucleic acids. , 2008, Journal of the American Chemical Society.

[13]  Yang Li,et al.  Self-assembly of supramolecular aptamer structures for optical or electrochemical sensing. , 2009, The Analyst.

[14]  Noritada Kaji,et al.  Rolling circle amplification and circle-to-circle amplification of a specific gene integrated with electrophoretic analysis on a single chip. , 2008, Analytical chemistry.

[15]  Harry M. T. Choi,et al.  Programming biomolecular self-assembly pathways , 2008, Nature.

[16]  A. Fire,et al.  Rolling replication of short DNA circles. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[17]  K. Mullis,et al.  Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. , 1988, Science.

[18]  Takahiko Nojima,et al.  A pyrene-labeled G-quadruplex oligonucleotide as a fluorescent probe for potassium ion detection in biological applications. , 2005, Angewandte Chemie.

[19]  Kemin Wang,et al.  Sensitive fluorescence detection of nucleic acids based on isothermal circular strand-displacement polymerization reaction , 2009, Nucleic acids research.