CRYSTAL-CHEMICAL CHARACTERIZATION OF CLINOPYROXENES BASED ON EIGHT NEW STRUCTURE REFINEMENTS'

Comparison of new crystal-structure refinements for spodumene, LiFe3tSi,O" synthetic ureyite, acmite, diopside, augite, a CZ/c omphacite, and a PZ omphacite with published refinements for jadeite, johannsenite, NaIn'+Si,O" fassaite, and another PZ omphacite indicates that the structures are strikingly similar throughout the range of chemical compositions. The "end-member" clinopyroxenes are ordered within the limits of resolution. Bonding can be satisfactorily explained in terms of an essentially ionic model without invoking additional covalent effects. Except for PZ omphacites, the charge and size of the Mz cations determine the structure type: if Mz is Ca or Na, CZ/c is expected; if Mz is Li, CZ; and if Mz is Mg or Fe", PZ,jc or orthorhombic. Precise bond distances for ordered "end-member" clinopyroxenes can be used in determining T and M1 site contents of intermediate-composition clinopyroxenes, and ferrous iron is disordered in such clinopyroxenes. "Ideal" PZ omphacite, Cao.,Na,,.,Mgo.5Alo.,Si,O,, is expected to have Mg and AI fully ordered in the M1 octahedral chains, but in the Mz sites the maximum amount of order in alternating sites is jCa, j Na, and jNa, j Ca.

[1]  C. Prewitt,et al.  Crystal chemistry of the pyroxenes and pyroxenoids , 1964 .

[2]  G. S. Smith,et al.  Single-crystal diffractometry: the improvement of accuracy in intensity measurements , 1964 .

[3]  D. T. Cromer,et al.  X-ray scattering factors computed from numerical Hartree–Fock wave functions , 1968 .

[4]  Carroll K. Johnson,et al.  X‐ray crystal analysis of the substrates of aconitase. VI. The structures of sodium and lithium dihydrogen citrates , 1965 .

[5]  B. Warren,et al.  XII. The structure of diopside, CaMg(SiO3)2 , 1929 .

[6]  J. Nolan An X-ray Investigation of Synthetic Pyroxenes in the System Acmite-Diopside-Water at 1000 kg/cm2 Water-Vapour Pressure , 1963 .

[7]  N. Morimoto,et al.  The crystal structures of clinoenstatite and pigeonite , 1960 .

[8]  N. Morimoto,et al.  Refinement of the crystal structure of pigeonite , 1970 .

[9]  W. Zachariasen,et al.  The crystal structure of monoclinic metaboric acid , 1963 .

[10]  D. Cruickshank 1077. The rôle of 3d-orbitals in π-bonds between (a) silicon, phosphorus, sulphur, or chlorine and (b) oxygen or nitrogen , 1961 .

[11]  D. Cruickshank,et al.  A reinvestigation of the structure of sodium metasilicate, Na2SiO3 , 1967 .

[12]  D. Cromer ANOMALOUS DISPERSION CORRECTIONS COMPUTED FROM SELF-CONSISTENT FIELD RELATIVISTIC DIRAC-SLATER WAVE FUNCTIONS , 1965 .

[13]  D. Cruickshank,et al.  A reconsideration of the structure of datolite, CaBSiO4(OH) , 1967 .

[14]  S. K. Kurtz,et al.  A powder technique for the evaluation of nonlinear optical materials , 1968 .

[15]  J. Smith A review of the Al–O and Si–O distances , 1954 .

[16]  B. Warren,et al.  The crystal structure of the monoclinic pyroxenes , 1931 .

[17]  I. Borg,et al.  Calculated x-ray powder patterns for silicate minerals , 1969 .

[18]  B. Mason Pyrope, augite, and hornblende from Kakanui, New Zealand , 1966 .

[19]  S. W. Bailey,et al.  Second review of Al–O and Si–O tetrahedral distances , 1963 .

[20]  C. Klein,et al.  Ureyite, NaCrSi2O6: A New Meteoritic Pyroxene , 1965, Science.

[21]  E. Whittaker Relationships between the crystal chemistry of pyroxenes and amphiboles , 1960 .

[22]  D. Cromer,et al.  Scattering factors computed from relativistic Dirac–Slater wave functions , 1965 .

[23]  N. Morimoto,et al.  The crystal structures of clinoenstatite and pigeonite , 1960 .

[24]  R. L. Freed,et al.  Refinement of The Crystal Structure of Johannsenite , 1967 .

[25]  J. Zussman The crystal chemistry of pyroxenes and amphiboles, 1. Pyroxenes , 1968 .

[26]  R. Coleman,et al.  Eclogites and Eclogites: Their Differences and Similarities , 1965 .

[27]  J. Papike,et al.  The crystal structure and cation distribution of glaucophane , 1968 .

[28]  J. Papike,et al.  Bonding in eight ordered clinopyroxenes isostructural with diopside , 1968 .

[29]  L. Pauling THE PRINCIPLES DETERMINING THE STRUCTURE OF COMPLEX IONIC CRYSTALS , 1929 .