BiCoS: A Bi-level co-segmentation method for image classification

The objective of this paper is the unsupervised segmentation of image training sets into foreground and background in order to improve image classification performance. To this end we introduce a new scalable, alternation-based algorithm for co-segmentation, BiCoS, which is simpler than many of its predecessors, and yet has superior performance on standard benchmark image datasets.

[1]  Rich Caruana,et al.  Multitask Learning , 1997, Machine-mediated learning.

[2]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[3]  Marie-Pierre Jolly,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[4]  Marie-Pierre Jolly,et al.  Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images , 2001, ICCV.

[5]  Shimon Ullman,et al.  Class-Specific, Top-Down Segmentation , 2002, ECCV.

[6]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[7]  Patrick Pérez,et al.  Interactive Image Segmentation Using an Adaptive GMMRF Model , 2004, ECCV.

[8]  Massimiliano Pontil,et al.  Regularized multi--task learning , 2004, KDD.

[9]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[10]  Nebojsa Jojic,et al.  LOCUS: learning object classes with unsupervised segmentation , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[11]  Alexei A. Efros,et al.  Geometric context from a single image , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[12]  Andrew Blake,et al.  Cosegmentation of Image Pairs by Histogram Matching - Incorporating a Global Constraint into MRFs , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[13]  Alexei A. Efros,et al.  Using Multiple Segmentations to Discover Objects and their Extent in Image Collections , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[14]  Narendra Ahuja,et al.  Extracting Subimages of an Unknown Category from a Set of Images , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[15]  Pietro Perona,et al.  One-shot learning of object categories , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Andrew Zisserman,et al.  A Visual Vocabulary for Flower Classification , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[17]  Andrew Zisserman,et al.  Delving into the Whorl of Flower Segmentation , 2007, BMVC.

[18]  Alexei A. Efros,et al.  Improving Spatial Support for Objects via Multiple Segmentations , 2007, BMVC.

[19]  David A. Forsyth,et al.  Unsupervised Segmentation of Objects using Efficient Learning , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Fei-Fei Li,et al.  Spatially Coherent Latent Topic Model for Concurrent Segmentation and Classification of Objects and Scenes , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[21]  Xiaoou Tang,et al.  A Hybrid Graph Model for Unsupervised Object Segmentation , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[22]  Andrew Zisserman,et al.  Automated Flower Classification over a Large Number of Classes , 2008, 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing.

[23]  Vikas Singh,et al.  Half-integrality based algorithms for cosegmentation of images , 2009, CVPR.

[24]  Stefano Soatto,et al.  Class segmentation and object localization with superpixel neighborhoods , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[25]  Vikas Singh,et al.  An efficient algorithm for Co-segmentation , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[26]  Sebastian Nowozin,et al.  On feature combination for multiclass object classification , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[27]  Stephen Gould,et al.  Decomposing a scene into geometric and semantically consistent regions , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[28]  Garrison W. Cottrell,et al.  Robust classification of objects, faces, and flowers using natural image statistics , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[29]  Jean Ponce,et al.  Discriminative clustering for image co-segmentation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[30]  Yihong Gong,et al.  Locality-constrained Linear Coding for image classification , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[31]  Vladimir Kolmogorov,et al.  Cosegmentation Revisited: Models and Optimization , 2010, ECCV.

[32]  Pietro Perona,et al.  Caltech-UCSD Birds 200 , 2010 .

[33]  Jiebo Luo,et al.  iCoseg: Interactive co-segmentation with intelligent scribble guidance , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[34]  Andrea Vedaldi,et al.  Vlfeat: an open and portable library of computer vision algorithms , 2010, ACM Multimedia.

[35]  Thomas Deselaers,et al.  ClassCut for Unsupervised Class Segmentation , 2010, ECCV.

[36]  Satoshi Ito,et al.  Object Classification Using Heterogeneous Co-occurrence Features , 2010, ECCV.

[37]  Vladimir Kolmogorov,et al.  Object cosegmentation , 2011, CVPR 2011.

[38]  Yoram Singer,et al.  Pegasos: primal estimated sub-gradient solver for SVM , 2011, Math. Program..

[39]  Andrew Zisserman,et al.  Efficient Additive Kernels via Explicit Feature Maps , 2012, IEEE Trans. Pattern Anal. Mach. Intell..