Prediction of optimal flow front velocity to minimize void formation in dual scale fibrous reinforcements

Liquid Composite Molding (LCM) is an increasingly used class of processes to manufacture high performance composites. Engineering fabrics commonly used in LCM generally have a dual scale architecture in terms of porosity: microscopic pores exist between the filaments in the fiber tows, while macroscopic pores appear between the tows. Capillary flows in fiber tows play a major role on the quality of composites made by resin injection through fibrous reinforcements. This paper reports on an investigation on fabric imbibition characterization and subsequent evaluation of the optimal flow front velocity during resin injection through fibrous reinforcements. The goal is to devise more robust LCM processes and improve part quality. In order to evaluate a priori the injection conditions that minimize void formation, an impregnation model is developed based on imbibition characterization. This approach allows predicting the optimal front velocity without having to model complex dual scale flows through fibrous reinforcements and without performing expensive and time-consuming fabrication tests. After a summary of previous imbibition results obtained with a probe fluid, the optimal modified capillary numbers are computed by the new predictive model and the values are compared with results reported in the literature on void formation in LCM processes. Afterwards, capillary rise measurements are carried out with four infiltration fluids in order to evaluate the range of optimal flow front velocity that minimizes void formation. This characterization is implemented with vinyl ester resin, epoxy anhydride resin, styrene and anhydride. Finally, the optimal flow front velocity is evaluated for several fabric configurations.

[1]  Christophe Binetruy,et al.  Dynamic void content prediction during radial injection in liquid composite molding , 2008 .

[2]  J. Berg,et al.  The effect of surfactants on wicking flow in fiber networks , 1988 .

[3]  Vincent Achim,et al.  Guiding selection for reduced process development time in RTM , 2010 .

[4]  R. H. Brooks,et al.  Properties of Porous Media Affecting Fluid Flow , 1966 .

[5]  Effect of Perturbation of Fibre Architecture on Permeability Inside Fibre Tows , 1995 .

[6]  Richard W. Johnson The handbook of fluid dynamics , 1998 .

[7]  A. Perwuelz,et al.  Determination of the Pore Sizes and their Influence on the Capillary Imbibition into Glass Wool , 2011 .

[8]  Norman R. S. Hollies,et al.  Water Transport Mechanisms in Textile Materials1 Part I: The Role of Yarn Roughness in Capillary-Type Penetration , 1956 .

[9]  An efficient solver of the saturation equation in liquid composite molding processes , 2010 .

[10]  Woo Il Lee,et al.  Analysis and minimization of void formation during resin transfer molding process , 2006 .

[11]  L. White Capillary rise in powders , 1982 .

[12]  V. Michaud,et al.  On measuring wettability in infiltration processing , 2007 .

[13]  J. Månson,et al.  Characterization of epoxy resin surface energetics , 2001 .

[14]  S. B. Nasrallah,et al.  Dynamics of capillary rise in yarns: Influence of fiber and liquid characteristics , 2007 .

[15]  Rikard Gebart,et al.  Influence from process parameters on void formation in resin transfer molding , 1994 .

[16]  Joël Bréard,et al.  Void fraction prevision in LCM parts , 2001 .

[17]  David Quéré,et al.  Precursors of impregnation , 2003 .

[18]  B. R. Gebart,et al.  Permeability of Unidirectional Reinforcements for RTM , 1992 .

[19]  J. Bear Dynamics of Fluids in Porous Media , 1975 .

[20]  S. R. Ghiorse,et al.  Effect of void content on the mechanical properties of carbon/epoxy laminates , 1993 .

[21]  S. Chwastiak,et al.  A wicking method for measuring wetting properties of carbon yarns , 1973 .

[22]  Krishna M. Pillai,et al.  Modeling the Unsaturated Flow in Liquid Composite Molding Processes: A Review and Some Thoughts , 2004 .

[23]  F. Trochu,et al.  Experimental characterization by fluorescence of capillary flows in dual-scale engineering fabrics , 2013 .

[24]  C. Lekakou,et al.  Axial Impregnation of a Fiber Bundle. Part 1: Capillary Experiments , 2002 .

[25]  Sandro Campos Amico,et al.  Axial Impregnation of a Fiber Bundle. Part 2: Theoretical Analysis , 2002 .

[26]  M. Mackay,et al.  Chemorheology of thermosets—an overview , 1996 .

[27]  Christopher W. Macosko,et al.  Process parameters estimation for structural reaction injection molding and resin transfer molding , 1990 .

[28]  John C. Berg,et al.  Simultaneous measurements of permeability and capillary pressure of thermosetting matrices in woven fabric reinforcements , 1991 .

[29]  J. Armour,et al.  Fluid flow through woven screens , 1968 .

[30]  M. Koishi,et al.  Temperature dependence of liquid epoxy resin impregnation through polyester non-woven fabric , 1983 .

[31]  R. Prud’homme,et al.  Quantitative measurement of voids formed during liquid impregnation of nonwoven multifilament glass networks using an optical visualization technique , 2004 .

[32]  F. Trochu,et al.  Experimental Characterization by Fluorescence of Capillary Flows in the Fiber Tows of Engineering Fabrics , 2012 .

[33]  Yunguang Chen,et al.  Capillary Impregnation of Aligned Fibrous Beds: Experiments and Model , 1996 .

[34]  S. Advani,et al.  Investigation of unsaturated flow in woven, braided and stitched fiber mats during mold‐filling in resin transfer molding , 2001 .

[35]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[36]  S. Mhetre,et al.  The effect of fabric structure and yarn-to-yarn liquid migration on liquid transport in fabrics , 2010 .

[37]  A. Jakovics,et al.  Wetting dynamics in multiscale porous media. Porous pore‐doublet model, experiment and theory , 2008 .

[38]  A. Adamson Physical chemistry of surfaces , 1960 .

[39]  J. G. Williams,et al.  Liquid flow through aligned fiber beds , 1974 .

[40]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[41]  Larry Lessard,et al.  An experimental investigation of class A surface finish of composites made by the resin transfer molding process , 2007 .

[42]  Edu Ruiz,et al.  Porosity reduction using optimized flow velocity in Resin Transfer Molding , 2008 .

[43]  Woo Il Lee,et al.  Formation of microvoids during resin-transfer molding process , 2000 .

[44]  B. Miller,et al.  Liquid porosimetry : new methodology and applications , 1994 .

[45]  P. Gennes,et al.  Capillarity and Wetting Phenomena , 2004 .

[46]  B. Widom Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves , 2003 .

[47]  Paolo Ermanni,et al.  Numerical prediction and experimental characterisation of meso-scale-voids in liquid composite moulding , 2007 .

[48]  J. Schultz,et al.  Effect of dynamic contact angle on capillary rise phenomena , 2000 .

[49]  F. Trochu,et al.  Advanced numerical simulation of liquid composite molding for process analysis and optimization , 2006 .

[50]  A. T. DiBenedetto,et al.  Tailoring of interfaces in glass fiber reinforced polymer composites: a review , 2001 .

[51]  Jan-Anders E. Månson,et al.  Capillary Effects in Liquid Composite Moulding with Non-Crimp Fabrics , 2003 .

[52]  F. Petke,et al.  Temperature dependence of contact angles of liquids on polymeric solids , 1969 .

[53]  Chung Hae Park,et al.  Modeling void formation and unsaturated flow in liquid composite molding processes: a survey and review , 2011 .

[54]  E. Plueddemann Interfaces in polymer matrix composites , 1974 .

[55]  Frédéric Ratle,et al.  Evolutionary operators for optimal gate location in liquid composite moulding , 2009, Appl. Soft Comput..

[56]  F. Trochu,et al.  Optimization of injection flow rate to minimize micro/macro-voids formation in resin transfer molded composites , 2006 .

[57]  T. Lundström Measurement of void collapse during resin transfer moulding , 1997 .

[58]  Y. Wielhorski,et al.  Void Prediction During Liquid Composite Molding Processes: Wetting and Capillary Phenomena , 2012, 1207.4184.

[59]  E. W. Washburn The Dynamics of Capillary Flow , 1921 .

[60]  Mécanismes d'imprégnation en milieux fibreux : modélisation et application à la mise en oeuvre des matériaux composites à fibres longues , 2011 .

[61]  Anindya Ghosh,et al.  Wetting and Wicking in Fibrous Materials , 2006 .

[62]  J. Senecot Etude de l'imprégnation capillaire de tissus de verre , 2002 .

[63]  W. Lee,et al.  Modeling and simulation of voids and saturation in liquid composite molding processes , 2011 .

[64]  L. J. Lee,et al.  Effects of fiber mat architecture on void formation and removal in liquid composite molding , 1995 .

[65]  J. Thomason,et al.  The use of XPS for characterisation of glass fibre coatings , 1999 .

[66]  R. Powell,et al.  Experimental investigation of the axial impregnation of oriented fiber bundles by capillary forces , 1991 .

[67]  Ian Sinclair,et al.  3D damage characterisation and the role of voids in the fatigue of wind turbine blade materials , 2012 .

[68]  Andris Jakovics,et al.  Bubble formation and motion in non-crimp fabrics with perturbed bundle geometry , 2010 .

[69]  D. F. Evans,et al.  Fundamentals of Interfacial Engineering , 1996 .

[70]  R. Powell,et al.  Impregnation Dynamics of Carbon Fiber Tows , 1992 .