Answering why-not spatial keyword top-k queries via keyword adaption

Web objects, often associated with descriptive text documents, are increasingly being geo-tagged. A spatial keyword top-k query retrieves the best k such objects according to a scoring function that considers both spatial distance and textual similarity. However, it is in some cases difficult for users to identify the exact keywords that describe their query intent. After a user issues an initial query and gets back the result, the user may find that some expected objects are missing and may wonder why. Answering the resulting why-not questions can aid users in retrieving better results. However, no existing techniques are able to answer why-not questions by adapting the query keywords. We propose techniques capable of adapting an initial set of query keywords so that expected, but missing, objects enter the result along with other relevant objects. We develop a basic algorithm with a set of optimizations that sequentially examines a sequence of candidate keyword sets. In addition, we present an index-based bound-and-prune algorithm that is able to determine the best sample out of a set of candidates in just one pass of index traversal, thus speeding up the query processing. We also extend the proposed algorithms to handle multiple missing objects. Extensive experimental results offer insight into the efficiency of the proposed techniques in terms of running time and I/O cost.

[1]  Christian S. Jensen,et al.  Efficient Retrieval of the Top-k Most Relevant Spatial Web Objects , 2009, Proc. VLDB Endow..

[2]  Quoc Trung Tran,et al.  How to ConQueR why-not questions , 2010, SIGMOD Conference.

[3]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[4]  Nikos Mamoulis,et al.  Spatio-textual similarity joins , 2012, Proc. VLDB Endow..

[5]  Eric Lo,et al.  Answering Why-Not Questions on Top-K Queries , 2012, IEEE Transactions on Knowledge and Data Engineering.

[6]  Adriane Chapman,et al.  Why Not? , 1965, SIGMOD Conference.

[7]  Christopher D. Manning,et al.  Introduction to Information Retrieval , 2010, J. Assoc. Inf. Sci. Technol..

[8]  Jianliang Xu,et al.  Answering why-not questions on spatial keyword top-k queries , 2015, 2015 IEEE 31st International Conference on Data Engineering.

[9]  Melanie Herschel,et al.  Explaining missing answers to SPJUA queries , 2010, Proc. VLDB Endow..

[10]  Xing Xie,et al.  Hybrid index structures for location-based web search , 2005, CIKM '05.

[11]  Jianliang Xu,et al.  Social-Aware Top-k Spatial Keyword Search , 2014, 2014 IEEE 15th International Conference on Mobile Data Management.

[12]  Christian S. Jensen,et al.  Efficient continuously moving top-k spatial keyword query processing , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[13]  Ken C. K. Lee,et al.  IR-Tree: An Efficient Index for Geographic Document Search , 2011, IEEE Trans. Knowl. Data Eng..

[14]  Christian S. Jensen,et al.  Spatial Keyword Querying , 2012, ER.

[15]  Jiaheng Lu,et al.  Reverse spatial and textual k nearest neighbor search , 2011, SIGMOD '11.

[16]  João B. Rocha-Junior,et al.  Top-k spatial keyword queries on road networks , 2012, EDBT '12.

[17]  Feifei Li,et al.  Spatial Approximate String Search , 2013, IEEE Transactions on Knowledge and Data Engineering.

[18]  João B. Rocha-Junior,et al.  Efficient Processing of Top-k Spatial Keyword Queries , 2011, SSTD.

[19]  Gang Chen,et al.  Answering Why-not Questions on Reverse Top-k Queries , 2015, Proc. VLDB Endow..

[20]  Anthony K. H. Tung,et al.  Locating mapped resources in Web 2.0 , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).

[21]  Jing Xu,et al.  DESKS: Direction-Aware Spatial Keyword Search , 2012, 2012 IEEE 28th International Conference on Data Engineering.

[22]  Christian S. Jensen,et al.  Retrieving top-k prestige-based relevant spatial web objects , 2010, Proc. VLDB Endow..

[23]  Naphtali Rishe,et al.  Keyword Search on Spatial Databases , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[24]  Anthony K. H. Tung,et al.  Keyword Search in Spatial Databases: Towards Searching by Document , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[25]  Chengfei Liu,et al.  On answering why-not questions in reverse skyline queries , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).

[26]  Christian S. Jensen,et al.  Spatial Keyword Query Processing: An Experimental Evaluation , 2013, Proc. VLDB Endow..

[27]  Christian S. Jensen,et al.  A framework for efficient spatial web object retrieval , 2012, The VLDB Journal.

[28]  Beng Chin Ooi,et al.  Collective spatial keyword querying , 2011, SIGMOD '11.

[29]  Jeffrey F. Naughton,et al.  On the provenance of non-answers to queries over extracted data , 2008, Proc. VLDB Endow..

[30]  Sourav S. Bhowmick,et al.  Why not, WINE?: towards answering why-not questions in social image search , 2013, MM '13.

[31]  Jun Hu,et al.  SEAL: Spatio-Textual Similarity Search , 2012, Proc. VLDB Endow..

[32]  Jianliang Xu,et al.  Reverse keyword search for spatio-textual top-k queries in location-based services , 2015, 2016 IEEE 32nd International Conference on Data Engineering (ICDE).

[33]  Torsten Suel,et al.  Efficient query processing in geographic web search engines , 2006, SIGMOD Conference.

[34]  Mário J. Silva,et al.  Indexing and ranking in Geo-IR systems , 2005, GIR '05.