A neurobiological theory of meaning in perception

The currency of brains is primarily meaning and only secondarily information. Brain select and pre-process the information carried by sensory stimuli before they construct meaning, and they post-process cognitive meaning into informative commands that control appropriate action and express meaning. A grasp of the intervening process of perception by which meaning is created from information requires observation of neural activity in brains during meaningful behavior of humans and other animals. Measurement is followed by detailed analysis and modeling of the neural activity in order to deduce brain dynamics from brain operations. Unlike computer operation, brain function is hierarchical with many levels. Neurobiologists infer sensory and motor information by recording pulses of microscopic axons of neurons. They infer meaning by recording the local mean fields that are generated by the dendrites of neurons forming interactive mesoscopic and macroscopic populations. Neural populations express meaning in spatial pattern of amplitude modulation of electroencephalographic (EEG) waveforms in the higher frequency ranges of cortical oscillations. Improved theory is needed to understand how brains create meaning. The aim of the theory is to apply population neurodynamics to device new ways to treat clinical brain disorders, and to devise new machines with capacities for autonomy and intelligence that might approach those of simpler free-living animals.

[1]  Walter J. Freeman,et al.  Olfactory EEG Changes under Serial Discrimination of Odorants by Rabbits , 1990 .

[2]  J. Piaget The moral judgement in the child, New York (Harcourt, Brace & Company) 1932. , 1932 .

[3]  Peter A. Robinson,et al.  Synchronous oscillations in the cerebral cortex , 1998 .

[4]  D. Tucker,et al.  Medial Frontal Cortex in Action Monitoring , 2000, The Journal of Neuroscience.

[5]  L. Ingber Statistical mechanics of multiple scales of neocortical interactions , 1995 .

[6]  W. Freeman,et al.  How brains make chaos in order to make sense of the world , 1987, Behavioral and Brain Sciences.

[7]  John S. Barlow,et al.  The Electroencephalogram: Its Patterns and Origins , 1993 .

[8]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[9]  Walter J. Freeman,et al.  Response dynamics of entorhinal cortex in awake, anesthetized, and bulbotomized rats , 2001, Brain Research.

[10]  W. Freeman,et al.  Relation of olfactory EEG to behavior: time series analysis. , 1986, Behavioral neuroscience.

[11]  Walter J. Freeman,et al.  Local Homeostasis Stabilizes a Model of the Olfactory System Globally in Respect to Perturbations by Input During Pattern Classification , 1998 .

[12]  S. Bressler Interareal synchronization in the visual cortex , 1996, Behavioural Brain Research.

[13]  R. Llinás,et al.  Dendritic calcium conductances generate high-frequency oscillation in thalamocortical neurons. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[14]  H Petsche,et al.  Synchronization between temporal and parietal cortex during multimodal object processing in man. , 1999, Cerebral cortex.

[15]  W. Freeman,et al.  A neurobiological theory of meaning in perception. Part 5. Multicortical patterns of phase modulation in gamma EEG - eScholarship , 2003 .

[16]  D. Lindley,et al.  Boltzmann’s Atom: The Great Debate That Launched a Revolution in Physics , 2001 .

[17]  S. Bressler,et al.  Episodic multiregional cortical coherence at multiple frequencies during visual task performance , 1993, Nature.

[18]  K. Pribram Languages of the Brain: Experimental Paradoxes and Principles in Neuropsychology , 1971 .

[19]  John G. Harris,et al.  Design and implementation of a biologically realistic olfactory cortex in analog VLSI , 2001, Proc. IEEE.

[20]  D. Contreras,et al.  Electrophysiological properties of intralaminar thalamocortical cells discharging rhythmic (≈40 HZ) spike-bursts at ≈1000 HZ during waking and rapid eye movement sleep , 1993, Neuroscience.

[21]  W J Freeman,et al.  Relation of olfactory EEG to behavior: factor analysis. , 1987, Behavioral neuroscience.

[22]  V. N. Dumenko Electroencephalographic Investigation of Cortical Relationships in Dogs During Formation of a Conditioned Reflex Stereotype , 1970 .

[23]  Walter J. Freeman,et al.  Characteristics of the Synchronization of Brain Activity imposed by Finite conduction Velocities of axons , 2000, Int. J. Bifurc. Chaos.

[24]  W. Freeman,et al.  Effects of carnosine on olfactory bulb EEG, evoked potentials and DC potentials , 1980, Brain Research.

[25]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[26]  A. Haig,et al.  Synchronous cortical gamma‐band activity in task‐relevant cognition , 2000, Neuroreport.

[27]  Walter J. Freeman,et al.  NOISE-INDUCED FIRST-ORDER PHASE TRANSITIONS IN CHAOTIC BRAIN ACTIVITY , 1999 .

[28]  W. Freeman,et al.  Spatio-temporal correlations in human gamma band electrocorticograms. , 1996, Electroencephalography and clinical neurophysiology.

[29]  E. Basar Brain Function and Oscillations , 1998 .

[30]  Daniel J. Amit,et al.  Modeling brain function: the world of attractor neural networks, 1st Edition , 1989 .

[31]  W. Freeman Use of Spatial Deconvolution to Compensate for Distortion of EEG by Volume Conduction , 1980, IEEE Transactions on Biomedical Engineering.

[32]  Ch. von der Malsburg,et al.  How are Nervous Structures Organized , 1983 .

[33]  Maurice Merleau-Ponty Phenomenology of Perception , 1964 .

[34]  W. Freeman,et al.  Frequency analysis of olfactory system EEG in cat, rabbit, and rat. , 1980, Electroencephalography and clinical neurophysiology.

[35]  R. Eckhorn,et al.  Amplitude envelope correlation detects coupling among incoherent brain signals , 2000, Neuroreport.

[36]  Donald O. Walter,et al.  Mass action in the nervous system , 1975 .

[37]  Péter Érdi,et al.  The KIV model - nonlinear spatio-temporal dynamics of the primordial vertebrate forebrain , 2003, Neurocomputing.

[38]  A. Clark Being There: Putting Brain, Body, and World Together Again , 1996 .

[39]  Karl H. Pribram,et al.  The Languages of the Brain , 2002 .

[40]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[41]  M. Tovée,et al.  The functional nature of neuronal oscillations , 1992, Trends in Neurosciences.

[42]  N. Spruston,et al.  Diversity and dynamics of dendritic signaling. , 2000, Science.

[43]  G. H. R. Parkinson,et al.  The theory of meaning , 1968 .

[44]  Ad Aertsen,et al.  Stable propagation of synchronous spiking in cortical neural networks , 1999, Nature.

[45]  Peter König,et al.  Stimulus-Dependent Assembly Formation of Oscillatory Responses: I. Synchronization , 1991, Neural Computation.

[46]  Joseph P. Romano,et al.  Bootstrap confidence bands for spectra and cross-spectra , 1992, IEEE Trans. Signal Process..

[47]  H. Hendriks-Jansen Catching Ourselves in the Act: Situated Activity, Interactive Emergence, Evolution, and Human Thought , 1996 .

[48]  R. Llinás,et al.  Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Hualou Liang,et al.  Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and variability assessment , 2000, Biological Cybernetics.

[50]  W. Freeman,et al.  Taming chaos: stabilization of aperiodic attractors by noise [olfactory system model] , 1997 .

[51]  Christoph Braun,et al.  Coherence of gamma-band EEG activity as a basis for associative learning , 1999, Nature.

[52]  Eilon Vaadia,et al.  Cognitive neuroscience: Learning how the brain learns , 2000, Nature.

[53]  Walter J. Freeman,et al.  Spectral analysis of electrical activity in the prepyriform cortex of the cat , 1963 .

[54]  Walter J. Freeman,et al.  TUTORIAL ON NEUROBIOLOGY: FROM SINGLE NEURONS TO BRAIN CHAOS , 1992 .

[55]  C. Sherrington Man On His Nature , 1940 .

[56]  W. Freeman,et al.  Spatial spectral analysis of human electrocorticograms including the alpha and gamma bands , 2000, Journal of Neuroscience Methods.

[57]  James J. Wright,et al.  Dynamics of the brain at global and microscopic scales: Neural networks and the EEG , 1996, Behavioral and Brain Sciences.

[58]  Luc Steels,et al.  The artificial life route to artificial intelligence : building embodied , 1995 .

[59]  W. Freeman,et al.  LINEAR DOMAIN OF POTENTIALS FROM THE PREPYRIFORM CORTEX WITH RESPECT TO STIMULUS PARAMETERS. , 1965, Experimental neurology.

[60]  D. Sholl The organization of the cerebral cortex , 1957 .

[61]  E. Izhikevich,et al.  Thalamo-cortical interactions modeled by weakly connected oscillators: could the brain use FM radio principles? , 1998, Bio Systems.

[62]  E. Harth,et al.  Electric Fields of the Brain: The Neurophysics of Eeg , 2005 .

[63]  Leah Edelstein-Keshet,et al.  Do travelling band solutions describe cohesive swarms? An investigation for migratory locusts , 1998 .

[64]  W. Singer,et al.  Visuomotor integration is associated with zero time-lag synchronization among cortical areas , 1997, Nature.

[65]  Richard A. Davis,et al.  Time Series: Theory and Methods (2nd ed.). , 1992 .

[66]  W. Freeman,et al.  Aperiodic phase re‐setting in scalp EEG of beta–gamma oscillations by state transitions at alpha–theta rates , 2003, Human brain mapping.

[67]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[68]  Catherine Tallon-Baudry,et al.  Induced γ-Band Activity during the Delay of a Visual Short-Term Memory Task in Humans , 1998, The Journal of Neuroscience.

[69]  M. Stryker Drums Keep Pounding a Rhythm in the Brain , 2001, Science.

[70]  R. Fischer,et al.  From transmission of signals' to self-creation of meaning' transformations in the concept of information , 1993 .

[71]  Frank Rosenblatt,et al.  PRINCIPLES OF NEURODYNAMICS. PERCEPTRONS AND THE THEORY OF BRAIN MECHANISMS , 1963 .

[72]  Alain Destexhe,et al.  Modelling corticothalamic feedback and the gating of the thalamus by the cerebral cortex , 2000, Journal of Physiology-Paris.

[73]  Eugene M. Izhikevich,et al.  Weakly Connected Quasi-periodic Oscillators, FM Interactions, and Multiplexing in the Brain , 1999, SIAM J. Appl. Math..

[74]  Walter J. Freeman,et al.  EEG analysis gives model of neuronal template-matching mechanism for sensory search with olfactory bulb , 1979, Biological Cybernetics.

[75]  Naftali Tishby,et al.  Cortical activity flips among quasi-stationary states. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[76]  T. Ferrée,et al.  Fluctuation Analysis of Human Electroencephalogram , 2001, physics/0105029.

[77]  Walter J. Freeman,et al.  A Neurobiological Theory of Meaning in Perception Part V: Multicortical Patterns of Phase Modulation in Gamma EEG , 2003, Int. J. Bifurc. Chaos.

[78]  L. Tsitolovsky,et al.  Neurons evaluate both the amplitude and the meaning of signals , 2002, Brain Research.

[79]  M. Steriade Impact of network activities on neuronal properties in corticothalamic systems. , 2001, Journal of neurophysiology.

[80]  P. Robinson,et al.  Modal analysis of corticothalamic dynamics, electroencephalographic spectra, and evoked potentials. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[81]  W. Freeman,et al.  Topographic analysis of epidural pure-tone-evoked potentials in gerbil auditory cortex. , 2000, Journal of neurophysiology.

[82]  W. Freeman,et al.  Spatial spectra of scalp EEG and EMG from awake humans , 2003, Clinical Neurophysiology.

[83]  W. Freeman,et al.  Change in pattern of ongoing cortical activity with auditory category learning , 2001, Nature.

[84]  W. Freeman,et al.  COMPARISON OF EEG TIME SERIES FROM RAT OLFACTORY SYSTEM WITH MODEL COMPOSED OF NONLINEAR COUPLED OSCILLATORS , 1995 .

[85]  D. E. Sheer,et al.  Sensory and Cognitive 40-Hz Event-Related Potentials: Behavioral Correlates, Brain Function, and Clinical Application , 1989 .

[86]  I. Tsuda Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. , 2001, The Behavioral and brain sciences.

[87]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[88]  P. Nunez,et al.  Spatial filtering and neocortical dynamics: estimates of EEG coherence , 1998, IEEE Transactions on Biomedical Engineering.

[89]  J Y Lettvin,et al.  Speculations on smell. , 1965, Cold Spring Harbor symposia on quantitative biology.

[90]  Michael W. Spratling,et al.  Gamma oscillations and object processing in the infant brain. , 2000, Science.

[91]  Walter J Freeman,et al.  A neurobiological theory of meaning in perception . Part 1 . , 2004 .

[92]  W. Freeman,et al.  Spatial patterns of visual cortical fast EEG during conditioned reflex in a rhesus monkey , 1987, Brain Research.

[93]  J. Piaget The Child's Conception of Physical Causality , 1927 .

[94]  W. Freeman,et al.  Spatiotemporal analysis of prepyriform, visual, auditory, and somesthetic surface EEGs in trained rabbits. , 1996, Journal of neurophysiology.

[95]  Jürgen Kurths,et al.  Complex Phase Synchronization in Neurophysiological Data , 1999 .

[96]  F. L. D. Silva,et al.  Differential distribution of β and θ EEG activity in the entorhinal cortex of the cat , 1988, Brain Research.

[97]  J. Panksepp Affective Neuroscience: The Foundations of Human and Animal Emotions , 1998 .

[98]  Prof. Dr. Valentino Braitenberg,et al.  Anatomy of the Cortex , 1991, Studies of Brain Function.

[99]  Steven M. Miller,et al.  Binocular rivalry and perceptual coherence , 2000, Current Biology.

[100]  Christopher J. Bishop,et al.  Pulsed Neural Networks , 1998 .

[101]  Moshe Abeles,et al.  Corticonics: Neural Circuits of Cerebral Cortex , 1991 .

[102]  M. Steriade Corticothalamic resonance, states of vigilance and mentation , 2000, Neuroscience.

[103]  Robert Kozma,et al.  Chaotic Resonance - Methods and Applications for Robust Classification of noisy and Variable Patterns , 2001, Int. J. Bifurc. Chaos.

[104]  B. Baars In the theater of consciousness : the workspace of the mind , 1997 .

[105]  I. Prigogine,et al.  From Being to Becoming: Time and Complexity in the Physical Sciences , 1982 .

[106]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[107]  B. Baird,et al.  Relation of olfactory EEG to behavior: spatial analysis. , 1987, Behavioral neuroscience.

[108]  W. Freeman How Brains Make Up Their Minds , 1999 .

[109]  R. Buxton Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques , 2002 .

[110]  Stevan Harnad,et al.  Symbol grounding problem , 1990, Scholarpedia.

[111]  Y Miyashita,et al.  How the brain creates imagery: projection to primary visual cortex. , 1995, Science.

[112]  W. Freeman,et al.  Pattern analysis of cortical evoked potential parameters during attention changes , 1969 .

[113]  R. Freeman,et al.  Intracortical connections are not required for oscillatory activity in the visual cortex: Erratum , 1997, Visual Neuroscience.

[114]  A Aertsen,et al.  Propagation of synchronous spiking activity in feedforward neural networks , 1996, Journal of Physiology-Paris.

[115]  Tom Stonier,et al.  Information and Meaning , 1997, Springer London.

[116]  F. Varela,et al.  Perception's shadow: long-distance synchronization of human brain activity , 1999, Nature.

[117]  Walter J. Freeman,et al.  A Neurobiological Theory of Meaning in Perception Part III: Multiple Cortical Areas Synchronize without Loss of Local Autonomy , 2003, Int. J. Bifurc. Chaos.

[118]  W. Freeman,et al.  Analysis of spatial patterns of phase in neocortical gamma EEGs in rabbit. , 2000, Journal of neurophysiology.

[119]  R. Eckhorn,et al.  Flexible cortical gamma-band correlations suggest neural principles of visual processing , 2001 .

[120]  W. Freeman,et al.  Fine temporal resolution of analytic phase reveals episodic synchronization by state transitions in gamma EEGs. , 2002, Journal of neurophysiology.

[121]  Matthias M. Müller Hochfrequente oszillatorische Aktivitten im menschlichen Gehirn , 2000 .

[122]  P. Milner A model for visual shape recognition. , 1974, Psychological review.

[123]  F. H. Lopes da Silva,et al.  Anatomic organization and physiology of the limbic cortex. , 1990, Physiological reviews.

[124]  C. Gray,et al.  Chattering Cells: Superficial Pyramidal Neurons Contributing to the Generation of Synchronous Oscillations in the Visual Cortex , 1996, Science.

[125]  L. Nadel,et al.  The Hippocampus as a Cognitive Map , 1978 .

[126]  G. Tamás,et al.  Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro , 1998, The Journal of physiology.

[127]  W. Freeman,et al.  Correlations between unit firing and EEG in the rat olfactory system , 1990, Brain Research.

[128]  R. Traub,et al.  A mechanism for generation of long-range synchronous fast oscillations in the cortex , 1996, Nature.

[129]  W. Freeman The physiology of perception. , 1991, Scientific American.

[130]  W. Freeman,et al.  Bidirectional processing in the olfactory-limbic axis during olfactory behavior. , 1998, Behavioral neuroscience.

[131]  J Barham,et al.  A dynamical model of the meaning of information. , 1996, Bio Systems.

[132]  Andreas K. Engel,et al.  Temporal Binding, Binocular Rivalry, and Consciousness , 1999, Consciousness and Cognition.

[133]  Frank A. Beach,et al.  The neuropsychology of Lashley : selected papers of K.S. Lashley , 1961 .

[134]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[135]  John G. Taylor,et al.  Neural networks for consciousness , 1997, Neural Networks.

[136]  J. Pernier,et al.  Stimulus Specificity of Phase-Locked and Non-Phase-Locked 40 Hz Visual Responses in Human , 1996, The Journal of Neuroscience.

[137]  Christopher R. Stambaugh,et al.  Simultaneous encoding of tactile information by three primate cortical areas , 1998, Nature Neuroscience.

[138]  W. Köhler Dynamics in Psychology , 1940 .

[139]  Walter J. Freeman,et al.  A Neurobiological Theory of Meaning in Perception. , 2022 .

[140]  Walter J. Freeman,et al.  Biologically Modeled Noise Stabilizing Neurodynamics for Pattern Recognition , 1998 .

[141]  R. Traub,et al.  Neuronal fast oscillations as a target site for psychoactive drugs. , 2000, Pharmacology & therapeutics.

[142]  R Quian Quiroga,et al.  Performance of different synchronization measures in real data: a case study on electroencephalographic signals. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[143]  R. A. Young,et al.  Mind, brain and adaptation in the nineteenth century: Cerebral localization and its biological context from Gall to Ferrier , 1970 .

[144]  W. Freeman,et al.  Changes in spatial patterns of rabbit olfactory EEG with conditioning to odors. , 1982, Psychophysiology.

[145]  William H. Calvin,et al.  The Cerebral Code: Thinking a Thought in the Mosaics of the Mind , 1996 .

[146]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[147]  Liang-sheng Lu,et al.  [Expression of fusion proteins in beta(2)GP I gene-transfected HEp-2 cells and its clinical application]. , 2002, Zhonghua yi xue za zhi.

[148]  C M Michel,et al.  Intracerebral dipole source localization for FFT power maps. , 1990, Electroencephalography and clinical neurophysiology.

[149]  J S Kauer,et al.  Mapping of odor-related neuronal activity in the olfactory bulb by high-resolution 2-deoxyglucose autoradiography. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[150]  Y. Chen [The change of serum alpha 1-antitrypsin level in patients with spontaneous pneumothorax]. , 1995, Zhonghua jie he he hu xi za zhi = Zhonghua jiehe he huxi zazhi = Chinese journal of tuberculosis and respiratory diseases.