Three‐level regular designs with general minimum lower‐order confounding

In this paper, we extend the general minimum lower-order confounding (GMC) criterion to the case of three-level designs. First, we review the relationship between GMC and other criteria. Then we introduce an aliased component-number pattern (ACNP) and a three-level GMC criterion via the consideration of component effects, and obtain some results on the new criterion. All the 27-run GMC designs, 81-run GMC designs with factor numbers and 243-run GMC designs with resolution or higher are tabulated. The Canadian Journal of Statistics 41: 192–210; 2013 © 2012 Statistical Society of Canada Dans cet article, nous generalisons le critere de l'amalgame general minimal d'ordre inferieur (GMC) aux plans d'experience a trois niveaux. Dans un premier temps, nous passons en revue les relations entre le GMC et les autres criteres. Par la suite, nous presentons une representation numerique du nombre de composantes de repliement (ACNP) et un critere GMC a trois niveaux en considerant l'effet des composantes. Nous presentons aussi quelques resultats sur ce nouveau critere. Nous avons catalogue tous les devis GMC a 27 iterations et a 81 iterations ayant un nombre de facteurs egaux a et les devis GMC a 243 iterations ayant une resolution ou superieure. La revue canadienne de statistique 41: 192–210; 2013 © 2012 Societe statistique du Canada

[1]  Shengli Zhao,et al.  A theory on constructing 2n-m designs with general minimum lower order confounding , 2011 .

[2]  R. Mukerjee,et al.  Characterization of general minimum lower order confounding via complementary sets , 2009 .

[3]  Changbao Wu,et al.  Clear two-factor interactions and minimum aberration , 2002 .

[4]  Mingyao Ai,et al.  sn−m Designs containing clear main effects or clear two-factor interactions , 2004 .

[5]  R. Zhang,et al.  Some results on two-level regular designs with general minimum lower-order confounding , 2011 .

[6]  Runchu Zhang,et al.  General minimum lower order confounding designs: An overview and a construction theory , 2010 .

[7]  Boxin Tang,et al.  Bounds on the maximum number of clear two‐factor interactions for 2m‐p designs of resolution III and IV , 2002 .

[8]  Yi Cheng,et al.  On construction of general minimum lower order confounding 2 n- m designs with N / 4 + 1 = n = 9 N / , 2010 .

[9]  A. S. Hedayat,et al.  2n-m designs with resolution III or IV containing clear two-factor interactions , 1998 .

[10]  Jiahua Chen,et al.  Some Results on $s^{n-k}$ Fractional Factorial Designs with Minimum Aberration or Optimal Moments , 1991 .

[11]  J. S. Hunter,et al.  The 2 k—p Fractional Factorial Designs Part I , 2000, Technometrics.

[12]  Hongquan Xu,et al.  A catalogue of three-level regular fractional factorial designs , 2005 .

[13]  George E. P. Box,et al.  The 2 k — p Fractional Factorial Designs Part II. , 1961 .

[14]  Changbao Wu,et al.  A graph-aided method for planning two-level experiments when certain interactions are important , 1992 .

[15]  Ching-Shui Cheng,et al.  Doubling and projection: A method of constructing two-level designs of resolution IV , 2006, math/0605616.

[16]  W. G. Hunter,et al.  Minimum Aberration 2 k–p Designs , 1980 .

[17]  J. S. Hunter,et al.  The 2 k — p Fractional Factorial Designs , 1961 .

[18]  Jiahua Chen,et al.  A catalogue of two-level and three-level fractional factorial designs with small runs , 1993 .

[19]  Zhiming Li,et al.  On general minimum lower order confounding criterion for s-level regular designs , 2015 .