QInfer: Statistical inference software for quantum applications

Characterizing quantum systems through experimental data is critical to applications as diverse as metrology and quantum computing. Analyzing this experimental data in a robust and reproducible manner is made challenging, however, by the lack of readily-available software for performing principled statistical analysis. We improve the robustness and reproducibility of characterization by introducing an open-source library, QInfer, to address this need. Our library makes it easy to analyze data from tomography, randomized benchmarking, and Hamiltonian learning experiments either in post-processing, or online as data is acquired. QInfer also provides functionality for predicting the performance of proposed experimental protocols from simulated runs. By delivering easy-to-use characterization tools based on principled statistical analysis, QInfer helps address many outstanding challenges facing quantum technology.

[1]  Bradley A. Chase,et al.  Single-shot parameter estimation via continuous quantum measurement , 2008, 0811.0601.

[2]  J. Brooks Why most published research findings are false: Ioannidis JP, Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece , 2008 .

[3]  Jeffrey N. Rouder,et al.  Robust misinterpretation of confidence intervals , 2013, Psychonomic bulletin & review.

[4]  H. Jeffreys The Theory of Probability , 1922 .

[5]  Christopher Ferrie,et al.  Accelerated randomized benchmarking , 2014, 1404.5275.

[6]  S. Kulik,et al.  Experimental adaptive quantum tomography of two-qubit states , 2015, 1510.05303.

[7]  Steven T. Flammia,et al.  Randomized benchmarking with confidence , 2014, 1404.6025.

[8]  Christopher Ferrie,et al.  Likelihood-free methods for quantum parameter estimation. , 2013, Physical review letters.

[9]  Arnaud Doucet,et al.  Particle methods for maximum likelihood estimation in latent variable models , 2008, Stat. Comput..

[10]  Nathan Wiebe,et al.  Quantum Hamiltonian learning using imperfect quantum resources , 2013, 1311.5269.

[11]  Nathan Wiebe,et al.  Efficient Bayesian Phase Estimation. , 2015, Physical review letters.

[12]  Karol Życzkowski,et al.  Random quantum operations , 2008, 0804.2361.

[13]  S. Flammia,et al.  Practical adaptive quantum tomography , 2016, 1605.05039.

[14]  Tom Minka,et al.  A family of algorithms for approximate Bayesian inference , 2001 .

[15]  Maarten Van den Nest,et al.  Simulating quantum computers with probabilistic methods , 2009, Quantum Inf. Comput..

[16]  Dennis Shasha,et al.  A model project for reproducible papers: critical temperature for the Ising model on a square lattice , 2014, ArXiv.

[17]  R. Blume-Kohout Optimal, reliable estimation of quantum states , 2006, quant-ph/0611080.

[18]  Steven T. Flammia,et al.  Estimating the coherence of noise , 2015, 1503.07865.

[19]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[20]  NathanWiebe,et al.  Quantum bootstrapping via compressed quantum Hamiltonian learning , 2015 .

[21]  Stephen R. Piccolo,et al.  Tools and techniques for computational reproducibility , 2016, GigaScience.

[22]  D. Berry,et al.  Entanglement-free Heisenberg-limited phase estimation , 2007, Nature.

[23]  Arnaud Doucet,et al.  On the Utility of Graphics Cards to Perform Massively Parallel Simulation of Advanced Monte Carlo Methods , 2009, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[24]  Shelby Kimmel,et al.  Robust Extraction of Tomographic Information via Randomized Benchmarking , 2013, 1306.2348.

[25]  Joseph Emerson,et al.  Scalable and robust randomized benchmarking of quantum processes. , 2010, Physical review letters.

[26]  R. Gill,et al.  Applications of the van Trees inequality : a Bayesian Cramr-Rao bound , 1995 .

[27]  D. Cory,et al.  Hamiltonian learning and certification using quantum resources. , 2013, Physical review letters.

[28]  A. Beskos,et al.  On the stability of sequential Monte Carlo methods in high dimensions , 2011, 1103.3965.

[29]  K.R.W. Jones Principles of quantum inference , 1991 .

[30]  Christopher Granade,et al.  Practical Bayesian tomography , 2015, 1509.03770.

[31]  John P. A. Ioannidis,et al.  How to Make More Published Research True , 2014, PLoS medicine.

[32]  Nicolas Pinto,et al.  PyCUDA and PyOpenCL: A scripting-based approach to GPU run-time code generation , 2009, Parallel Comput..

[33]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[34]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[35]  Christopher Ferrie,et al.  How to best sample a periodic probability distribution, or on the accuracy of Hamiltonian finding strategies , 2013, Quantum Inf. Process..

[36]  S. Kulik,et al.  Experimental Adaptive Bayesian Tomography , 2015 .

[37]  C. Helstrom Quantum detection and estimation theory , 1969 .

[38]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[39]  Victoria Stodden,et al.  Best Practices for Computational Science: Software Infrastructure and Environments for Reproducible and Extensible Research , 2014 .

[40]  Christopher E. Granade,et al.  Characterization, Verification and Control for Large Quantum Systems , 2015 .

[41]  M Steffen,et al.  Characterization of addressability by simultaneous randomized benchmarking. , 2012, Physical review letters.

[42]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[43]  曾华珍 How to make more , 2009 .

[44]  Andrew W. Cross,et al.  Scalable randomised benchmarking of non-Clifford gates , 2015, npj Quantum Information.

[45]  A. G. White,et al.  Ancilla-assisted quantum process tomography. , 2003, Physical review letters.

[46]  Andrew Blake,et al.  Articulated body motion capture by annealed particle filtering , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[47]  Frank K Wilhelm,et al.  Efficient estimation of resonant coupling between quantum systems. , 2014, Physical review letters.

[48]  Michael A. West,et al.  Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.

[49]  Alberto Porzio,et al.  Quantum tomography as a tool for the characterization of optical devices , 2001, quant-ph/0110110.

[50]  D J Egger,et al.  Adaptive hybrid optimal quantum control for imprecisely characterized systems. , 2014, Physical review letters.

[51]  M. West Approximating posterior distributions by mixtures , 1993 .

[52]  Joel J. Wallman,et al.  Bounding quantum gate error rate based on reported average fidelity , 2015, 1501.04932.

[53]  Howard M. Wiseman,et al.  Characterization of a qubit Hamiltonian using adaptive measurements in a fixed basis , 2011, 1102.3700.

[54]  C. Ferrie Quantum model averaging , 2014, 1405.6329.

[55]  J. Geremia,et al.  Magnetometry via a double-pass continuous quantum measurement of atomic spin , 2009, 0903.2050.

[56]  Nathan Wiebe,et al.  Robust online Hamiltonian learning , 2012, TQC.

[57]  Siu Kwan Lam,et al.  Numba: a LLVM-based Python JIT compiler , 2015, LLVM '15.

[58]  Jie W Weiss,et al.  Bayesian Statistical Inference for Psychological Research , 2008 .

[59]  N. Houlsby,et al.  Adaptive Bayesian quantum tomography , 2011, 1107.0895.

[60]  Steven T. Flammia,et al.  Estimating the fidelity of T gates using standard interleaved randomized benchmarking , 2016, 1608.02943.

[61]  Yuval Sanders,et al.  Characterizing Errors in Quantum Information Processors , 2016 .

[62]  O. Moussa,et al.  Robust and efficient in situ quantum control , 2014, 1409.3172.

[63]  Wiseman,et al.  Optimal states and almost optimal adaptive measurements for quantum interferometry , 2000, Physical review letters.