Control of trapped-ion quantum states with optical pulses.

We present new results on the quantum control of systems with infinitely large Hilbert spaces. A control-theoretic analysis of the control of trapped-ion quantum states via optical pulses is performed. We demonstrate how resonant bichromatic fields can be applied in two contrasting ways--one that makes the system completely uncontrollable and the other that makes the system controllable. In some interesting cases, the Hilbert space of the qubit-harmonic oscillator can be made finite, and the Schrödinger equation controllable via bichromatic resonant pulses. Extending this analysis to the quantum states of two ions, a new scheme for producing entangled qubits is discovered.

[1]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[2]  Ronnie Kosloff,et al.  Quantum computing by an optimal control algorithm for unitary transformations. , 2002, Physical review letters.

[3]  T. Tarn,et al.  On the controllability of quantum‐mechanical systems , 1983 .

[4]  Thomas Weinacht,et al.  Using feedback for coherent control of quantum systems , 2002 .

[5]  B. Shore,et al.  Coherent dynamics ofN-level atoms and molecules. II. Analytic solutions , 1977 .

[6]  R. Feynman Simulating physics with computers , 1999 .

[7]  Paul Brumer,et al.  Laser control of product quantum state populations in unimolecular reactions , 1986 .

[8]  Synthesis of arbitrary superposition of Zeeman states in an atom. , 1998, Optics express.

[9]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[10]  B. Shore,et al.  Coherent dynamics ofN-level atoms and molecules. I. Numerical experiments , 1977 .

[11]  Herschel Rabitz,et al.  Quantum wavefunction controllability , 2001 .

[12]  R. Brockett System Theory on Group Manifolds and Coset Spaces , 1972 .

[13]  R. Brockett Lie Theory and Control Systems Defined on Spheres , 1973 .

[14]  Law,et al.  Arbitrary control of a quantum electromagnetic field. , 1996, Physical review letters.

[15]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[16]  C. K. Law,et al.  PREPARATION OF ARBITRARY ENTANGLED QUANTUM STATES OF A TRAPPED ION , 1998 .

[17]  Gabriel Turinici,et al.  Contrôlabilité exacte de la population des états propres dans les systèmes quantiques bilinéaires , 2000 .

[18]  D. Leibfried,et al.  Experimental demonstration of a controlled-NOT wave-packet gate. , 2002, Physical Review Letters.

[19]  R. de Vivie-Riedle,et al.  Quantum computation with vibrationally excited molecules. , 2002, Physical review letters.

[20]  J. Hughes,et al.  Transport of Quantum States and Separation of Ions in a Dual Rf Ion Trap * , 2002 .

[21]  C. Rangan,et al.  Optimally shaped terahertz pulses for phase retrieval in a Rydberg-atom data register , 2001, quant-ph/0103171.

[22]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[23]  J J García-Ripoll,et al.  Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing. , 2003, Physical review letters.