Development of a 3-body:many-body integrated fragmentation method for weakly bound clusters and application to water clusters (H2O)(n = 3-10, 16, 17).

A 3-body:many-body integrated quantum mechanical (QM) fragmentation method for non-covalent clusters is introduced within the ONIOM formalism. The technique captures all 1-, 2-, and 3-body interactions with a high-level electronic structure method, while a less demanding low-level method is employed to recover 4-body and higher-order interactions. When systematically applied to 40 low-lying (H(2)O)(n) isomers ranging in size from n = 3 to 10, the CCSD(T):MP2 3-body:many-body fragmentation scheme deviates from the full CCSD(T) interaction energy by no more than 0.07 kcal mol(-1) (or <0.01 kcal mol(-1) per water). The errors for this QM:QM method increase only slightly for various low-lying isomers of (H(2)O)(16) and (H(2)O)(17) (always within 0.13 kcal mol(-1) of the recently reported canonical CCSD(T)/aug-cc-pVTZ energies). The 3-body:many-body CCSD(T):MP2 procedure is also very efficient because the CCSD(T) computations only need to be performed on subsets of the cluster containing 1, 2, or 3 monomers, which in the current context means the largest CCSD(T) calculations are for 3 water molecules, regardless of the cluster size.

[1]  A. W. Castleman,et al.  Clusters: Structure, Energetics, and Dynamics of Intermediate States of Matter , 1996 .

[2]  Walter Thiel,et al.  Combined Quantum Mechanical and Molecular Mechanical Approaches , 1998 .

[3]  Michael A Collins,et al.  Accuracy and efficiency of electronic energies from systematic molecular fragmentation. , 2006, The Journal of chemical physics.

[4]  Rodney J Bartlett,et al.  A natural linear scaling coupled-cluster method. , 2004, The Journal of chemical physics.

[5]  G. Leroy,et al.  L'utilisation d'orbitales localisées dans l'étude théorique des molécules , 1973 .

[6]  Tomoo Miyahara,et al.  Symmetry-adapted-cluster/symmetry-adapted-cluster configuration interaction methodology extended to giant molecular systems: ring molecular crystals. , 2007, The Journal of chemical physics.

[7]  Roger Hayward,et al.  The Hydrogen Bond , 1960 .

[8]  Masato Kobayashi,et al.  Divide-and-conquer-based linear-scaling approach for traditional and renormalized coupled cluster methods with single, double, and noniterative triple excitations. , 2009, The Journal of chemical physics.

[9]  Wei Li,et al.  Generalized energy-based fragmentation approach for computing the ground-state energies and properties of large molecules. , 2007, The journal of physical chemistry. A.

[10]  Marat Valiev,et al.  Fast electron correlation methods for molecular clusters without basis set superposition errors. , 2008, The Journal of chemical physics.

[11]  Martin Head-Gordon,et al.  A local correlation model that yields intrinsically smooth potential-energy surfaces. , 2005, The Journal of chemical physics.

[12]  Martin Head-Gordon,et al.  Closely approximating second-order Mo/ller–Plesset perturbation theory with a local triatomics in molecules model , 2000 .

[13]  Anthony J. Stone,et al.  The Theory of Intermolecular Forces , 2013 .

[14]  A. D. McLean,et al.  Accurate calculation of the attractive interaction of two ground state helium atoms , 1973 .

[15]  Brian W. Hopkins,et al.  Multicentred QM/QM methods for overlapping model systems , 2005 .

[16]  Hans-Joachim Werner,et al.  Local perturbative triples correction (T) with linear cost scaling , 2000 .

[17]  Jiali Gao,et al.  Hybrid Quantum and Molecular Mechanical Simulations: An Alternative Avenue to Solvent Effects in Organic Chemistry , 1996 .

[18]  Sotiris S. Xantheas,et al.  Cooperativity and Hydrogen Bonding Network in Water Clusters , 2000 .

[19]  D Chandler,et al.  Van der Waals Picture of Liquids, Solids, and Phase Transformations , 1983, Science.

[20]  Henrik Koch,et al.  Size-intensive decomposition of orbital energy denominators , 2000 .

[21]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[22]  Gregory S. Tschumper,et al.  CCSD(T) complete basis set limit relative energies for low-lying water hexamer structures. , 2009, The journal of physical chemistry. A.

[23]  N. H. Beebe,et al.  Simplifications in the generation and transformation of two‐electron integrals in molecular calculations , 1977 .

[24]  Michael A Collins,et al.  Approximate ab initio energies by systematic molecular fragmentation. , 2005, The Journal of chemical physics.

[25]  H. Koch,et al.  The CCSD(T) Model With Cholesky Decomposition of Orbital Energy Denominators , 2011 .

[26]  Kazuo Kitaura,et al.  Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. , 2007, The journal of physical chemistry. A.

[27]  T. Steiner The hydrogen bond in the solid state. , 2002, Angewandte Chemie.

[28]  Wei Li,et al.  Local correlation calculations using standard and renormalized coupled-cluster approaches. , 2009, The Journal of chemical physics.

[29]  S. Saebo Low-Scaling Methods for Electron Correlation , 2002 .

[30]  John Z. H. Zhang,et al.  Molecular fractionation with conjugate caps for full quantum mechanical calculation of protein-molecule interaction energy , 2003 .

[31]  Gregory S. Tschumper,et al.  Analytic gradients for the multicentred integrated QM:QM method for weakly bound clusters: efficient and accurate 2-body:many-body geometry optimizations , 2007 .

[32]  P Pulay,et al.  Local Treatment of Electron Correlation , 1993 .

[33]  Brian W. Hopkins,et al.  A multicentered approach to integrated QM/QM calculations. Applications to multiply hydrogen bonded systems , 2003, J. Comput. Chem..

[34]  Roland Lindh,et al.  Atomic Cholesky decompositions: a route to unbiased auxiliary basis sets for density fitting approximation with tunable accuracy and efficiency. , 2009, The Journal of chemical physics.

[35]  M. Levitt,et al.  Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. , 1976, Journal of molecular biology.

[36]  C. E. Dykstra,et al.  Experimental and theoretical challenges in the chemistry of noncovalent intermolecular interaction and clustering , 2000 .

[37]  C. Hadad,et al.  Structural studies of the water tetramer , 2008 .

[38]  Alistair P. Rendell,et al.  COUPLED-CLUSTER THEORY EMPLOYING APPROXIMATE INTEGRALS : AN APPROACH TO AVOID THE INPUT/OUTPUT AND STORAGE BOTTLENECKS , 1994 .

[39]  Brian W. Hopkins,et al.  Integrated quantum mechanical approaches for extended π systems: Multicentered QM/QM studies of the cyanogen and diacetylene trimers , 2005 .

[40]  Robert J. Harrison,et al.  Development of transferable interaction models for water. II. Accurate energetics of the first few water clusters from first principles , 2002 .

[41]  E. Carter,et al.  Size extensive modification of local multireference configuration interaction. , 2004, The Journal of chemical physics.

[42]  Gregory S. Tschumper,et al.  Comparison of polarization consistent and correlation consistent basis sets for noncovalent interactions , 2009 .

[43]  M. Karplus,et al.  A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations , 1990 .

[44]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[45]  Kenneth M. Merz,et al.  An Examination of a Hartree-Fock/Molecular Mechanical Coupled Potential , 1995 .

[46]  W. Lipscomb,et al.  Molecular Orbital Theory for Large Molecules. Approximation of the SCF LCAO Hamiltonian Matrix1 , 1966 .

[47]  Gregory S. Tschumper Multicentered integrated QM:QM methods for weakly bound clusters: An efficient and accurate 2-body:many-body treatment of hydrogen bonding and van der Waals interactions , 2006 .

[48]  Florian Weigend,et al.  Approximated electron repulsion integrals: Cholesky decomposition versus resolution of the identity methods. , 2009, The Journal of chemical physics.

[49]  V Ganesh,et al.  Molecular tailoring approach for geometry optimization of large molecules: energy evaluation and parallelization strategies. , 2006, The Journal of chemical physics.

[50]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[51]  J. Connolly,et al.  On the applicability of LCAO‐Xα methods to molecules containing transition metal atoms: The nickel atom and nickel hydride , 2009 .

[52]  Peter Pulay,et al.  Localizability of dynamic electron correlation , 1983 .

[53]  Gregory S. Tschumper Reliable Electronic Structure Computations for Weak Noncovalent Interactions in Clusters , 2009 .

[54]  Hans-Joachim Werner,et al.  Local treatment of electron correlation in coupled cluster theory , 1996 .

[55]  Peter Pulay,et al.  Orbital-invariant formulation and second-order gradient evaluation in Møller-Plesset perturbation theory , 1986 .

[56]  T. Daniel Crawford,et al.  Locally correlated equation-of-motion coupled cluster theory for the excited states of large molecules , 2002 .

[57]  Donald G Truhlar,et al.  Electrostatically Embedded Many-Body Expansion for Large Systems, with Applications to Water Clusters. , 2007, Journal of chemical theory and computation.

[58]  Roger E. Miller,et al.  Molecular clusters: Structure and dynamics of weakly bound systems , 1996 .

[59]  D. Wales Intermolecular Forces and Clusters II , 2005 .

[60]  Nan Jiang,et al.  Electrostatic field-adapted molecular fractionation with conjugated caps for energy calculations of charged biomolecules. , 2006, The Journal of chemical physics.

[61]  Albeiro Restrepo,et al.  Structural studies of the water hexamer. , 2010, The journal of physical chemistry. A.

[62]  Mark S. Gordon,et al.  Accurate methods for large molecular systems. , 2009, The journal of physical chemistry. B.

[63]  Shogo Sakai,et al.  Ab initio integrated multi-center molecular orbitals method for large cluster systems: total energy and normal vibration. , 2005, The journal of physical chemistry. A.

[64]  U. Singh,et al.  A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: Applications to the CH3Cl + Cl− exchange reaction and gas phase protonation of polyethers , 1986 .

[65]  Gregory S. Tschumper,et al.  Anchoring the potential energy surface of the cyclic water trimer. , 2004, The Journal of chemical physics.

[66]  Jan H. Jensen,et al.  Chapter 10 The Effective Fragment Potential: A General Method for Predicting Intermolecular Interactions , 2007 .

[67]  F. Manby Accurate condensed-phase quantum chemistry , 2010 .

[68]  R. Lindh,et al.  Low-cost evaluation of the exchange Fock matrix from Cholesky and density fitting representations of the electron repulsion integrals. , 2007, The Journal of chemical physics.

[69]  J. Herbert,et al.  An efficient, fragment-based electronic structure method for molecular systems: self-consistent polarization with perturbative two-body exchange and dispersion. , 2011, The Journal of chemical physics.

[70]  Peter Pulay,et al.  Fourth‐order Mo/ller–Plessett perturbation theory in the local correlation treatment. I. Method , 1987 .

[71]  Ping Qian,et al.  Ab initio investigation of water clusters (H2O)n (n = 2–34) , 2010 .

[72]  Hans-Joachim Werner,et al.  Low-order scaling local electron correlation methods. IV. Linear scaling local coupled-cluster (LCCSD) , 2001 .

[73]  Marat Valiev,et al.  Fast electron correlation methods for molecular clusters in the ground and excited states , 2005 .

[74]  Ralf Ludwig,et al.  Water: From Clusters to the Bulk. , 2001, Angewandte Chemie.

[75]  I. Røeggen,et al.  On the Beebe-Linderberg two-electron integral approximation , 1986 .

[76]  G. A. Jeffrey,et al.  An Introduction to Hydrogen Bonding , 1997 .

[77]  Peter Pulay,et al.  Local configuration interaction: An efficient approach for larger molecules , 1985 .

[78]  Thomas Bondo Pedersen,et al.  Reduced scaling in electronic structure calculations using Cholesky decompositions , 2003 .

[79]  Rick A. Kendall,et al.  The impact of the resolution of the identity approximate integral method on modern ab initio algorithm development , 1997 .

[80]  Sotiris S. Xantheas,et al.  Ab initio studies of cyclic water clusters (H2O)n, n=1–6. II. Analysis of many‐body interactions , 1994 .

[81]  Florian Weigend,et al.  A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency , 2002 .

[82]  Shridhar R. Gadre,et al.  Molecular Tailoring Approach for Simulation of Electrostatic Properties , 1994 .

[83]  Wei Li,et al.  Geometry optimizations and vibrational spectra of large molecules from a generalized energy-based fragmentation approach. , 2008, The journal of physical chemistry. A.

[84]  Gregory J O Beran,et al.  Approximating quantum many-body intermolecular interactions in molecular clusters using classical polarizable force fields. , 2009, The Journal of chemical physics.

[85]  M. Nooijen,et al.  Dynamically screened local correlation method using enveloping localized orbitals. , 2006, The Journal of chemical physics.

[86]  Jules W. Moskowitz,et al.  Water Molecule Interactions , 1970 .

[87]  Donald G Truhlar,et al.  Electrostatically Embedded Many-Body Correlation Energy, with Applications to the Calculation of Accurate Second-Order Møller-Plesset Perturbation Theory Energies for Large Water Clusters. , 2007, Journal of chemical theory and computation.

[88]  Edoardo Aprà,et al.  High-Level Ab Initio Electronic Structure Calculations of Water Clusters (H2O)16 and (H2O)17: A New Global Minimum for (H2O)16 , 2010 .

[89]  Holger Patzelt,et al.  RI-MP2: optimized auxiliary basis sets and demonstration of efficiency , 1998 .

[90]  S. Scheiner Molecular Interactions. From van der Waals to Strongly Bound Complexes , 1997 .

[91]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[92]  Martin Head-Gordon,et al.  Non-iterative local second order Møller–Plesset theory , 1998 .

[93]  G. Beran,et al.  Predicting Organic Crystal Lattice Energies with Chemical Accuracy , 2010 .

[94]  Martin W. Feyereisen,et al.  Use of approximate integrals in ab initio theory. An application in MP2 energy calculations , 1993 .

[95]  Peter Pulay,et al.  The local correlation treatment. II. Implementation and tests , 1988 .

[96]  E. Kryachko,et al.  Conceptual Perspectives in Quantum Chemistry , 1997 .

[97]  Mark S. Gordon,et al.  A Novel Approach to Parallel Coupled Cluster Calculations: Combining Distributed and Shared Memory Techniques for Modern Cluster Based Systems , 2007 .

[98]  D. Bernholdt,et al.  Large-scale correlated electronic structure calculations: the RI-MP2 method on parallel computers , 1996 .

[99]  Heather Netzloff,et al.  Ab initio energies of nonconducting crystals by systematic fragmentation. , 2007, The Journal of chemical physics.

[100]  Philippe Y. Ayala,et al.  Linear scaling second-order Moller–Plesset theory in the atomic orbital basis for large molecular systems , 1999 .

[101]  Shogo Sakai,et al.  IMiCMO: a new integrated ab initio multicenter molecular orbitals method for molecular dynamics calculations in solvent cluster systems , 2001, J. Comput. Chem..

[102]  J. L. Whitten,et al.  Coulombic potential energy integrals and approximations , 1973 .

[103]  Feliu Maseras,et al.  IMOMM: A new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states , 1995, J. Comput. Chem..

[104]  H. B. Jansen,et al.  Non-empirical molecular orbital calculations on the protonation of carbon monoxide , 1969 .

[105]  Martin Schütz,et al.  Low-order scaling local electron correlation methods. III. Linear scaling local perturbative triples correction (T) , 2000 .

[106]  Kazuo Kitaura,et al.  Coupled-cluster theory based upon the fragment molecular-orbital method. , 2005, The Journal of chemical physics.

[107]  Hannah R. Leverentz,et al.  Assessment of the accuracy of density functionals for prediction of relative energies and geometries of low-lying isomers of water hexamers. , 2008, The journal of physical chemistry. A.

[108]  P. Schuster,et al.  Hydrogen Bonding: From Small Clusters to Biopolymers , 1999 .

[109]  J. Almlöf,et al.  Integral approximations for LCAO-SCF calculations , 1993 .

[110]  Masami Uebayasi,et al.  Pair interaction molecular orbital method: an approximate computational method for molecular interactions , 1999 .

[111]  Jerzy Leszczynski,et al.  COMPUTATIONAL CHEMISTRY: Reviews of Current Trends , 2006 .

[112]  Masato Kobayashi,et al.  Alternative linear-scaling methodology for the second-order Møller-Plesset perturbation calculation based on the divide-and-conquer method. , 2007, The Journal of chemical physics.

[113]  K. Kitaura,et al.  Fragment molecular orbital method: an approximate computational method for large molecules , 1999 .

[114]  F. Weigend,et al.  RI-MP2: first derivatives and global consistency , 1997 .

[115]  Matthew L. Leininger,et al.  Anchoring the water dimer potential energy surface with explicitly correlated computations and focal point analyses , 2002 .

[116]  Georg Hetzer,et al.  Low-order scaling local electron correlation methods. I. Linear scaling local MP2 , 1999 .

[117]  Philippe Y. Ayala,et al.  Linear scaling coupled cluster and perturbation theories in the atomic orbital basis , 1999 .

[118]  Michael Dolg,et al.  Fully Automated Incremental Evaluation of MP2 and CCSD(T) Energies: Application to Water Clusters. , 2009, Journal of chemical theory and computation.

[119]  V. Vaida,et al.  Molecular complexes in close and far away. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[120]  Georg Hetzer,et al.  Multipole approximation of distant pair energies in local MP2 calculations , 1998 .

[121]  Kwang Soo Kim,et al.  Molecular Clusters of pi-Systems: Theoretical Studies of Structures, Spectra, and Origin of Interaction Energies. , 2000, Chemical reviews.

[122]  M. Quack,et al.  Potential Energy Hypersurfaces for Hydrogen Bonded Clusters (HF) n , 1997 .

[123]  Frederick R. Manby,et al.  Linear scaling local coupled cluster theory with density fitting. Part I: 4-external integrals , 2003 .

[124]  A theory of molecules in molecules , 1973 .

[125]  Mark S. Gordon,et al.  An effective fragment method for modeling solvent effects in quantum mechanical calculations , 1996 .

[126]  C. David Sherrill,et al.  Beyond the benzene dimer : An investigation of the additivity of π-π interactions , 2005 .

[127]  Nicholas J Mayhall,et al.  Molecules-in-Molecules: An Extrapolated Fragment-Based Approach for Accurate Calculations on Large Molecules and Materials. , 2011, Journal of chemical theory and computation.

[128]  Martin Schütz,et al.  A new, fast, semi-direct implementation of linear scaling local coupled cluster theory , 2002 .

[129]  Feng Long Gu,et al.  Describing electron correlation effects in the framework of the elongation method—Elongation‐MP2: Formalism, implementation and efficiency , 2009, J. Comput. Chem..