Biomass preservation in impact melt ejecta
暂无分享,去创建一个
P. Bland | M. Sephton | C. Jeynes | K. Howard | G. Cressey | M. Bailey | V. Stolojan | Z. Martins | D. Berhanu | R. Matthewman | L. Howard | S. Verchovsky
[1] Z. Řanda,et al. A review of volatile compounds in tektites, and carbon content and isotopic composition of moldavite glass , 2012 .
[2] K. Howard. Volatile enhanced dispersal of high velocity impact melts and the origin of tektites , 2011 .
[3] Frances Westall,et al. Preservation of organic matter in the STONE 6 artificial meteorite experiment , 2011 .
[4] M. Burchell,et al. The preservation of fossil biomarkers during meteorite impact events: Experimental evidence from biomarker‐rich projectiles and target rocks , 2010 .
[5] H. Melosh,et al. Bacterial spores in granite survive hypervelocity launch by spallation: implications for lithopanspermia. , 2009, Astrobiology.
[6] C. Jeynes,et al. Characterisation of inhomogeneous inclusions in Darwin glass using ion beam analysis , 2009 .
[7] K. Howard. Physical distribution trends in Darwin glass , 2009 .
[8] M. Burchell,et al. Survival of organic compounds in ejecta from hypervelocity impacts on ice , 2009, International Journal of Astrobiology.
[9] M. Burchell,et al. The thermal alteration by pyrolysis of the organic component of small projectiles of mudrock during capture at hypervelocity , 2008 .
[10] K. Howard. Geochemistry of Darwin glass and target rocks from Darwin crater, Tasmania, Australia , 2008 .
[11] N. Artemieva. Tektites: Model Versus Reality , 2008 .
[12] K. Howard,et al. The geology of Darwin Crater, western Tasmania, Australia , 2007 .
[13] Paul F. Green,et al. Organic geochemistry of impactites from the Haughton impact structure, Devon Island, Nunavut, Canada , 2007 .
[14] P. Bland. The impact rate on Earth , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[15] J. Burns,et al. Impact seeding and reseeding in the inner solar system. , 2005, Astrobiology.
[16] K. Howard,et al. Laser fusion argon‐40/argon‐39 ages of Darwin impact glass , 2002 .
[17] G. González,et al. Rummaging through Earth's attic for remains of ancient life , 2002, astro-ph/0207316.
[18] N. Artemieva,et al. Modeling the Ries‐Steinheim impact event and the formation of the moldavite strewn field , 2002 .
[19] G. Horneck,et al. Natural Transfer of Viable Microbes in Space: 1. From Mars to Earth and Earth to Mars , 2000 .
[20] Philip A. Bland,et al. Meteorite Accumulations on Mars , 1999 .
[21] E. Peterson,et al. Modification of amino acids at shock pressures of 3.5 to 32 GPa. , 1997, Geochimica et cosmochimica acta.
[22] C. Koeberl,et al. Impact Origin of the Chesapeake Bay Structure and the Source of the North American Tektites , 1996, Science.
[23] J. Ralph,et al. Pyrolysis-GC-MS characterization of forage materials , 1991 .
[24] E. Anders,et al. Pre-biotic organic matter from comets and asteroids , 1989, Nature.
[25] H. Melosh,et al. The rocky road to panspermia , 1988, Nature.
[26] Bevan M. French,et al. Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures , 1998 .
[27] Michael A. Wilson,et al. Meteors: A Delivery Mechanism of Organic Matter to the Early Earth , 1998 .
[28] H. Melosh. Impact Cratering: A Geologic Process , 1986 .
[29] C. Koeberl. Geochemistry of Tektites and Impact Glasses , 1986 .