Biomass preservation in impact melt ejecta

[1]  Z. Řanda,et al.  A review of volatile compounds in tektites, and carbon content and isotopic composition of moldavite glass , 2012 .

[2]  K. Howard Volatile enhanced dispersal of high velocity impact melts and the origin of tektites , 2011 .

[3]  Frances Westall,et al.  Preservation of organic matter in the STONE 6 artificial meteorite experiment , 2011 .

[4]  M. Burchell,et al.  The preservation of fossil biomarkers during meteorite impact events: Experimental evidence from biomarker‐rich projectiles and target rocks , 2010 .

[5]  H. Melosh,et al.  Bacterial spores in granite survive hypervelocity launch by spallation: implications for lithopanspermia. , 2009, Astrobiology.

[6]  C. Jeynes,et al.  Characterisation of inhomogeneous inclusions in Darwin glass using ion beam analysis , 2009 .

[7]  K. Howard Physical distribution trends in Darwin glass , 2009 .

[8]  M. Burchell,et al.  Survival of organic compounds in ejecta from hypervelocity impacts on ice , 2009, International Journal of Astrobiology.

[9]  M. Burchell,et al.  The thermal alteration by pyrolysis of the organic component of small projectiles of mudrock during capture at hypervelocity , 2008 .

[10]  K. Howard Geochemistry of Darwin glass and target rocks from Darwin crater, Tasmania, Australia , 2008 .

[11]  N. Artemieva Tektites: Model Versus Reality , 2008 .

[12]  K. Howard,et al.  The geology of Darwin Crater, western Tasmania, Australia , 2007 .

[13]  Paul F. Green,et al.  Organic geochemistry of impactites from the Haughton impact structure, Devon Island, Nunavut, Canada , 2007 .

[14]  P. Bland The impact rate on Earth , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  J. Burns,et al.  Impact seeding and reseeding in the inner solar system. , 2005, Astrobiology.

[16]  K. Howard,et al.  Laser fusion argon‐40/argon‐39 ages of Darwin impact glass , 2002 .

[17]  G. González,et al.  Rummaging through Earth's attic for remains of ancient life , 2002, astro-ph/0207316.

[18]  N. Artemieva,et al.  Modeling the Ries‐Steinheim impact event and the formation of the moldavite strewn field , 2002 .

[19]  G. Horneck,et al.  Natural Transfer of Viable Microbes in Space: 1. From Mars to Earth and Earth to Mars , 2000 .

[20]  Philip A. Bland,et al.  Meteorite Accumulations on Mars , 1999 .

[21]  E. Peterson,et al.  Modification of amino acids at shock pressures of 3.5 to 32 GPa. , 1997, Geochimica et cosmochimica acta.

[22]  C. Koeberl,et al.  Impact Origin of the Chesapeake Bay Structure and the Source of the North American Tektites , 1996, Science.

[23]  J. Ralph,et al.  Pyrolysis-GC-MS characterization of forage materials , 1991 .

[24]  E. Anders,et al.  Pre-biotic organic matter from comets and asteroids , 1989, Nature.

[25]  H. Melosh,et al.  The rocky road to panspermia , 1988, Nature.

[26]  Bevan M. French,et al.  Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures , 1998 .

[27]  Michael A. Wilson,et al.  Meteors: A Delivery Mechanism of Organic Matter to the Early Earth , 1998 .

[28]  H. Melosh Impact Cratering: A Geologic Process , 1986 .

[29]  C. Koeberl Geochemistry of Tektites and Impact Glasses , 1986 .