New Hybrid Light Harvesting Antenna Based on Silicon Nanowires and Metal Dendrimers

The realization of low‐cost silicon (Si) light harvesting antennas, made with industrially compatible technology and implementable in current devices, represents a goal with a tremendous impact for several commercial applications. For the first time, the use of Si nanowires (NWs) as energy donor in a light harvesting antenna is demonstrated. Through a detailed study of the optical properties, an energy transfer process from the NWs to the dyes is reported here. In this paper, the realization of this novel hybrid material based on the luminescence of ultra‐thin Si NWs and dyes demonstrates the potential of these systems for the transfer of light, opening the route to several strategic applications from photonics to photovoltaics, sensors, and bio‐imaging.

[1]  M. Pagliaro,et al.  Silicon Quantum Dots: Synthesis, Encapsulation, and Application in Light-Emitting Diodes , 2020, Frontiers in Chemistry.

[2]  Luca De Stefano Porous Silicon Optical Biosensors: Still a Promise or a Failure? , 2019, Sensors.

[3]  A. A. Leonardi,et al.  Electrodeposition of Nanoparticles and Continuous Film of CdSe on n-Si (100) , 2019, Nanomaterials.

[4]  D. Koelle,et al.  Nanoscale photovoltaic responses in 3D radial junction solar cells revealed by high spatial resolution laser excitation photoelectric microscopy. , 2019, ACS nano.

[5]  Xiaobin He,et al.  Miniaturization of CMOS , 2019, Micromachines.

[6]  A. A. Leonardi,et al.  Silicon nanowire luminescent sensor for cardiovascular risk in saliva , 2018, Journal of Materials Science: Materials in Electronics.

[7]  A. A. Leonardi,et al.  Ultrasensitive Label- and PCR-Free Genome Detection Based on Cooperative Hybridization of Silicon Nanowires Optical Biosensors. , 2018, ACS sensors.

[8]  A. A. Leonardi,et al.  Low Cost Fabrication of Si NWs/CuI Heterostructures , 2018, Nanomaterials.

[9]  F. Nastasi,et al.  Photo- and Redox-Active Metal Dendrimers: A Journey from Molecular Design to Applications and Self-Aggregated Systems , 2018, European Journal of Inorganic Chemistry.

[10]  A. A. Leonardi,et al.  New Generation of Ultrasensitive Label-Free Optical Si Nanowire-Based Biosensors , 2017 .

[11]  H. Amenitsch,et al.  Aggregation-Induced Energy Transfer in a Decanuclear Os(II)/Ru(II) Polypyridine Light-Harvesting Antenna Dendrimer , 2017 .

[12]  M. J. Lo Faro,et al.  Light-emitting silicon nanowires obtained by metal-assisted chemical etching , 2017 .

[13]  D. Wiersma,et al.  Coherent backscattering of Raman light , 2017, Nature Photonics.

[14]  F. Nastasi,et al.  A heptanuclear light-harvesting metal-based antenna dendrimer with six Ru(ii)-based chromophores directly powering a single Os(ii)-based energy trap. , 2016, Dalton transactions.

[15]  P. Ceroni,et al.  Photoinduced Electron-Transfer Quenching of Luminescent Silicon Nanocrystals as a Way To Estimate the Position of the Conduction and Valence Bands by Marcus Theory , 2016 .

[16]  Cristiano D'Andrea,et al.  Strongly enhanced light trapping in a two-dimensional silicon nanowire random fractal array , 2016, Light: Science & Applications.

[17]  P. Ceroni,et al.  Light-harvesting antennae based on photoactive silicon nanocrystals functionalized with porphyrin chromophores. , 2015, Faraday discussions.

[18]  Junzhuan Wang,et al.  Full potential of radial junction Si thin film solar cells with advanced junction materials and design , 2015 .

[19]  W. Xu,et al.  Bright Multicolored Photoluminescence of Hybrid Graphene/Silicon Optoelectronics , 2015 .

[20]  P. Ceroni,et al.  Photoinduced Processes between Pyrene-Functionalized Silicon Nanocrystals and Carbon Allotropes , 2015 .

[21]  P. Yang,et al.  Chapter 6:Nanowires for Photovoltaics and Artificial Photosynthesis , 2014 .

[22]  Giacomo Bergamini,et al.  Silicon Nanocrystals Functionalized with Pyrene Units: Efficient Light-Harvesting Antennae with Bright Near-Infrared Emission. , 2014, The journal of physical chemistry letters.

[23]  B. Richards,et al.  Broadband photoluminescent quantum yield optimisation of Er3+-doped β-NaYF4 for upconversion in silicon solar cells , 2014 .

[24]  Junzhuan Wang,et al.  Understanding Light Harvesting in Radial Junction Amorphous Silicon Thin Film Solar Cells , 2014, Scientific Reports.

[25]  W. Lu,et al.  Semiconductor nanowires from next-generation electronics to sustainable energy , 2014 .

[26]  T. Krauss,et al.  Silicon nanostructures for photonics and photovoltaics. , 2014, Nature nanotechnology.

[27]  M. Foldyna,et al.  High efficiency and stable hydrogenated amorphous silicon radial junction solar cells built on VLS-grown silicon nanowires , 2013 .

[28]  T. Gregorkiewicz,et al.  Experimental investigation and modeling of Auger recombination in silicon nanocrystals , 2013 .

[29]  G. Ozin,et al.  Multicolor silicon light-emitting diodes (SiLEDs). , 2013, Nano letters.

[30]  Xiang Zhang,et al.  Heterojunction silicon microwire solar cells. , 2012, Nano letters.

[31]  Maxwell J. Crossley,et al.  Improving the light-harvesting of amorphous silicon solar cells with photochemical upconversion , 2012 .

[32]  A. Malko,et al.  Optimizing non-radiative energy transfer in hybrid colloidal-nanocrystal/silicon structures by controlled nanopillar architectures for future photovoltaic cells , 2012 .

[33]  Ming Zhou,et al.  Synthesis and electrochemiluminescence of bis(2,2′-bipyridine)(5-amino-1,10-phenanthroline) ruthenium(II)-functionalized gold nanoparticles , 2011 .

[34]  Liang Tang,et al.  Visible electroluminescence from hybrid colloidal silicon quantum dot-organic light-emitting diodes , 2011 .

[35]  Hong Ding,et al.  In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. , 2011, ACS nano.

[36]  Mauro Ferrari,et al.  Biodegradable Porous Silicon Barcode Nanowires with Defined Geometry , 2010, Advanced functional materials.

[37]  Nathan S Lewis,et al.  Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. , 2010, Nature materials.

[38]  Lorenzo Pavesi,et al.  Silicon Nanocrystals Fundamentals Synthesis and Applications , 2010 .

[39]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[40]  T. Gregorkiewicz,et al.  Saturation of luminescence from Si nanocrystals embedded in SiO2 , 2010 .

[41]  M. Brongersma,et al.  Energy transfer in nanowire solar cells with photon-harvesting shells , 2009 .

[42]  V. Sundström,et al.  Extending the light-harvesting properties of transition-metal dendrimers. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[43]  T. Mančal,et al.  Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems , 2007, Nature.

[44]  C. R. Mayer,et al.  Polypyridyl ruthenium complexes as coating agent for the formation of gold and silver nanocomposites in different media. Preliminary luminescence and electrochemical studies , 2006 .

[45]  U. Kortshagen,et al.  High-yield plasma synthesis of luminescent silicon nanocrystals. , 2005, Nano letters.

[46]  R. Walters,et al.  Field-effect electroluminescence in silicon nanocrystals , 2005, Nature materials.

[47]  A. Shalav,et al.  Application of NaYF 4 : Er 3 + up-converting phosphors for enhanced near-infrared silicon solar cell response , 2005 .

[48]  V. Sundström,et al.  New paradigm of transition metal polypyridine complex photochemistry. , 2004, Faraday discussions.

[49]  H. Imahori,et al.  Giant multiporphyrin arrays as artificial light-harvesting antennas. , 2004, The journal of physical chemistry. B.

[50]  F. Priolo,et al.  Electroluminescence of silicon nanocrystals in MOS structures , 2002 .

[51]  N. McClenaghan,et al.  Light-harvesting metal dendrimers appended with additional organic chromophores: a tetranuclear heterometallic first-generation dendrimer exhibiting unusual absorption features , 2001 .

[52]  Andrew G. Glen,et al.  APPL , 2001 .

[53]  G. Shao,et al.  An efficient room-temperature silicon-based light-emitting diode , 2001, Nature.

[54]  Domenico Pacifici,et al.  Role of the energy transfer in the optical properties of undoped and Er-doped interacting Si nanocrystals , 2001 .

[55]  Luca Dal Negro,et al.  Optical gain in silicon nanocrystals , 2000, Nature.

[56]  S. Ossicini,et al.  Porous silicon: a quantum sponge structure for silicon based optoelectronics , 2000 .

[57]  Grace M. Credo,et al.  External quantum efficiency of single porous silicon nanoparticles , 1999 .

[58]  Steven G. Louie,et al.  Quantum confinement and optical gaps in Si nanocrystals , 1997 .

[59]  A. Credi,et al.  Polynuclear metal complexes of nanometre size. A versatilesynthetic strategy leading to luminescent and redox-active dendrimers madeof an osmium(II)-based core and ruthenium(II)-basedunits in the branches , 1997 .

[60]  Philippe M. Fauchet,et al.  Photoluminescence and electroluminescence from porous silicon , 1996 .

[61]  D. Centonze,et al.  Voltammetric and XPS investigations of polynuclear ruthenium-containing cyanometallate film electrodes , 1996 .

[62]  Thomas J. Meyer,et al.  Spatial electrochromism in metallopolymeric films of ruthenium polypyridyl complexes , 1996 .

[63]  P. G. Gassman,et al.  1,2,3,4-Tetramethyl-5-(trifluoromethyl)cyclopentadienide: a unique ligand with the steric properties of pentamethylcyclopentadienide and the electronic properties of cyclopentadienide , 1992 .

[64]  V. Balzani,et al.  A new hetero-tetrametallic complex of ruthenium and osmium: absorption spectrum, luminescence properties, and electrochemical behaviour , 1989 .

[65]  P. G. Gassman,et al.  Preparation, electrochemical oxidation, and XPS studies of unsymmetrical ruthenocenes bearing the pentamethylcyclopentadienyl ligand. , 1988, Journal of the American Chemical Society.