Towards phase transferable potential functions: Methodology and application to nitrogen

We describe a generalizable approach to the development of phase transferable effective intermolecular potentials and apply the method to the study of N2. The method is based on a polarizable shell model description of the isolated molecule and uses experimental data to establish the parameters. Consideration of the Ne dimer shows this to be a conceptual advance over point polarizability descriptions of atomic interaction. Our parametrization of N2 accurately describes not only the molecule’s electrostatic field (i.e., a practical representation of the molecular charge distribution) but also its response to electrical and mechanical stress (polarization and deformation). The purely intermolecular terms in our potential reflect shell‐shell interactions. These are parametrized by fitting properties of the low temperature solid phase of nitrogen. We derive a phase transferable potential able to account for the second virial coefficient of the gas phase, the pressure induced phase transition between nitrogen’...

[1]  D. Woon Benchmark calculations with correlated molecular wave functions. V. The determination of accurate abinitio intermolecular potentials for He2, Ne2, and Ar2 , 1994 .

[2]  Ming-Jing Hwang,et al.  Derivation of class II force fields. I. Methodology and quantum force field for the alkyl functional group and alkane molecules , 1994, J. Comput. Chem..

[3]  Kari Laasonen,et al.  ‘‘Ab initio’’ liquid water , 1993 .

[4]  James R. Rustad,et al.  A polarizable, dissociating molecular dynamics model for liquid water , 1993 .

[5]  D. Ben‐Amotz,et al.  Vibrational frequency shifts of fluid nitrogen up to ultrahigh temperatures and pressures , 1993 .

[6]  W. Goddard,et al.  Effective Hamiltonians for motions with disparate time scales: The quantum shell model and the classical statistical shell model , 1993 .

[7]  R. Eggenberger,et al.  Ab initio calculation of the second virial coefficient of neon and the potential energy curve of Ne2 , 1991 .

[8]  G. Wilse Robinson,et al.  A new flexible/polarizable water model , 1991 .

[9]  Giorgina Corongiu,et al.  Molecular dynamics simulations of liquid water using the NCC ab initio potential , 1990 .

[10]  Michiel Sprik,et al.  A polarizable model for water using distributed charge sites , 1988 .

[11]  Sarah L. Price,et al.  SOME NEW IDEAS IN THE THEORY OF INTERMOLECULAR FORCES - ANISOTROPIC ATOM ATOM POTENTIALS , 1988 .

[12]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[13]  P. Marteau,et al.  Density effects and relative diffusion in the far infrared absorption spectrum of compressed liquid nitrogen , 1986 .

[14]  Kobashi,et al.  High-pressure static and dynamic properties of the R3-barc phase of solid nitrogen. , 1986, Physical review. B, Condensed matter.

[15]  D. Oxtoby,et al.  Collision‐induced absorption in gaseous N2 , 1986 .

[16]  A. van der Avoird,et al.  An improved intermolecular potential for nitrogen , 1986 .

[17]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[18]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[19]  W. J. Meath,et al.  Second virial coefficients, including quantum corrections, for nitrogen using model potentials , 1984 .

[20]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[21]  R. Gordon,et al.  Density‐functional theory for solid nitrogen and carbon dioxide at high pressure , 1983 .

[22]  J. Hunt,et al.  Analysis of the far infrared spectrum of gaseous N2 , 1981 .

[23]  J. Perram,et al.  Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[24]  Ye,et al.  Dielectric theory for polar molecules with fluctuating polarizability , 1980 .

[25]  Lawrence R. Pratt,et al.  Effective field of a dipole in non-polar polarizable fluids , 1980 .

[26]  Ad van der Avoird,et al.  N2–N2 interaction potential from ab initio calculations, with application to the structure of (N2)2 , 1980 .

[27]  A. Avoird,et al.  Multipole moments, polarizabilities and anisotropic long range interaction coefficients for N2 , 1980 .

[28]  J. Dymond,et al.  The Virial Coefficients of Pure Gases and Mixtures: A Critical Compilation , 1979 .

[29]  N. Hush,et al.  Finite-field method calculations. IV. Higher-order moments, dipole moment gradients, polarisability gradients and field-induced shifts in molecular properties: Application to N2, CO, CN−, HCN and HNC , 1978 .

[30]  M. Thiéry,et al.  Comment on ’’Vibron and lattice frequency shifts in the Raman spectra of solid α‐N2 and γ‐N2 and librational force constants of diatomic molecular crystals’’ , 1977 .

[31]  E. Richard Cohen,et al.  Influence of the potential function on the determination of multipole moments from pressure‐induced far‐infrared spectra , 1977 .

[32]  N. S. Gillis,et al.  The anisotropic interaction between nitrogen molecules from solid state data , 1977 .

[33]  T. Scott Solid and liquid nitrogen , 1976 .

[34]  Kazuo Kitaura,et al.  A new energy decomposition scheme for molecular interactions within the Hartree‐Fock approximation , 1976 .

[35]  Bruce J. Berne,et al.  Intermolecular potential models for anisotropic molecules, with applications to N2, CO2, and benzene , 1976 .

[36]  O. Matsuoka,et al.  CI study of the water dimer potential surface , 1976 .

[37]  J. Kjems,et al.  Crystal dynamics of nitrogen: the cubic. cap alpha. -phase , 1975 .

[38]  J. G. Powles,et al.  The properties of liquid nitrogen: I. Self-diffusion coefficient , 1974 .

[39]  W. B. Daniels,et al.  Volume Dependence of Raman Frequencies inα-N2 , 1974 .

[40]  R. L. Mills,et al.  alpha-gamma Transition in Solid Nitrogen and Carbon Monoxide at High Pressure , 1971 .

[41]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[42]  E. D. Adams,et al.  Thermal expansion and isothermal compressibility of solid nitrogen , 1970 .

[43]  R. L. Mills,et al.  Crystal Structure of Gamma Nitrogen , 1969 .

[44]  B. C. Kohin Molecular Rotation in Crystals of N2 and CO , 1960 .

[45]  A. W. Overhauser,et al.  Theory of the Dielectric Constants of Alkali Halide Crystals , 1958 .

[46]  C. Swenson New Modification of Solid Nitrogen , 1955 .

[47]  R. Scott Molecular theory of gases and liquids , 1955 .

[48]  W. Giauque,et al.  The Heat Capacity and Entropy of Nitrogen. Heat of Vaporization. Vapor Pressures of Solid and Liquid. The Reaction 1/2 N2 + 1/2 O2 = NO from Spectroscopic Data , 1933 .

[49]  W. Gawlik Optical nonlinearity and atomic coherences , 1994 .

[50]  Keith E. Gubbins,et al.  Theory of molecular fluids , 1984 .

[51]  R. Amos SCF and CI calculations of the one-electron properties, polarizabilities and polarizability derivatives of the nitrogen molecule , 1980 .

[52]  P. A. Egelstaff Structure and dynamics of diatomic molecular fluids , 1978 .

[53]  B. Bederson,et al.  Atomic and Molecular Polarizabilities-A Review of Recent Advances , 1978 .

[54]  H. Werner,et al.  Finite perturbation calculations for the static dipole polarizabilities of the first-row atoms , 1976 .

[55]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[56]  R. L. Mills,et al.  Crystal Structures of the Three Modifications of Nitrogen 14 and Nitrogen 15 at High Pressure , 1970 .

[57]  John S. Rowlinson,et al.  Liquids and liquid mixtures , 1959 .

[58]  G. Herzberg,et al.  Spectra of diatomic molecules , 1950 .