Ancilla-driven quantum computation with twisted graph states

We introduce a new paradigm for quantum computing called Ancilla-Driven Quantum Computation (ADQC) which combines aspects of the quantum circuit (Deutsch, 1989 [1]) and the one-way model (Raussendorf and Briegel, 2001 [2]) to overcome some of the challenging issues in building large-scale quantum computers. Instead of directly manipulating each qubit to perform universal quantum logic gates or measurements, ADQC uses a fixed two-qubit interaction to couple the memory register of a quantum computer to an ancilla qubit. By measuring the ancilla, the measurement-induced back-action on the system performs the desired logical operations. We characterise all two-qubit interactions which couple any ancilla qubit with any memory qubit, while satisfying certain desirable conditions. We require these interactions to implement unitary, stepwise deterministic and universal evolution. Moreover, it should be possible to standardise the computation, that is, applying all global operations at the beginning. We prove there are only two such classes of interactions characterised in terms of the non-local part of the interaction operator. This leads to the definition of a new entanglement resource called twisted graph states generated from non-commuting operators. The ADQC model is formalised in an algebraic framework similar to the Measurement Calculus (Danos et al., 2007 [8]). Furthermore, we present the notion of causal flow for twisted graph states, based on the stabiliser formalism, to characterise the determinism. Finally we demonstrate a compositional embedding between ADQC and both the one-way and circuit models which will allow us to transfer recently developed theory and toolkits of measurement-based quantum computing directly into ADQC.

[1]  R. Jozsa An introduction to measurement based quantum computation , 2005, quant-ph/0508124.

[2]  Pieter Kok,et al.  Efficient high-fidelity quantum computation using matter qubits and linear optics , 2005 .

[3]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[4]  Elham Kashefi,et al.  Computational Depth Complexity of Measurement-Based Quantum Computation , 2009, TQC.

[5]  J. Siewert,et al.  Natural two-qubit gate for quantum computation using the XY interaction , 2002, quant-ph/0209035.

[6]  B. Varcoe,et al.  A cavity-QED scheme for cluster-state quantum computing using crossed atomic beams , 2006 .

[7]  Andrew D. Greentree,et al.  Identifying a two-state Hamiltonian in the presence of decoherence , 2006 .

[8]  Simon Perdrix,et al.  Classically controlled quantum computation , 2004, Mathematical Structures in Computer Science.

[9]  P. Zoller,et al.  A scalable quantum computer with ions in an array of microtraps , 2000, Nature.

[10]  R. Feynman Simulating physics with computers , 1999 .

[11]  P. Panangaden,et al.  Parsimonious and robust realizations of unitary maps in the one-way model , 2005 .

[12]  Andrew D. Greentree,et al.  Coherent electronic transfer in quantum dot systems using adiabatic passage , 2004 .

[13]  M. S. Chapman,et al.  Quantum entanglement using trapped atomic spins , 2000 .

[14]  Andreas Winter,et al.  Are random pure States useful for quantum computation? , 2008, Physical review letters.

[15]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[16]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[17]  Jens Siewert,et al.  Aspects of Qubit Dynamics in the Presence of Leakage , 2000 .

[18]  M. Nielsen Cluster-state quantum computation , 2005, quant-ph/0504097.

[19]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[20]  M L Glasser,et al.  Indirect interaction of solid-state qubits via two-dimensional electron gas. , 2001, Physical review letters.

[21]  D. Gross,et al.  Novel schemes for measurement-based quantum computation. , 2006, Physical review letters.

[22]  Mark Oskin,et al.  Architectural implications of quantum computing technologies , 2006, ACM J. Emerg. Technol. Comput. Syst..

[23]  Elham Kashefi,et al.  The measurement calculus , 2004, JACM.

[24]  Andrew M. Steane,et al.  How to build a 300 bit, 1 Giga-operation quantum computer , 2004, Quantum Inf. Comput..

[25]  D J Wineland,et al.  Observation of the 1S0-->3P0 clock transition in 27Al+. , 2007, Physical review letters.

[26]  D. Gross,et al.  Most quantum States are too entangled to be useful as computational resources. , 2008, Physical review letters.

[27]  E. Kashefi,et al.  Generalized flow and determinism in measurement-based quantum computation , 2007, quant-ph/0702212.

[28]  E. Kashefi,et al.  Determinism in the one-way model , 2005, quant-ph/0506062.

[29]  P. Grangier,et al.  Two-dimensional transport and transfer of a single atomic qubit in optical tweezers , 2007, 0705.0312.

[30]  L. Hollenberg,et al.  Scalable Error Correction in Distributed Ion Trap Computers , 2006, quant-ph/0606226.

[31]  Elham Kashefi,et al.  Universal Blind Quantum Computation , 2008, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[32]  Robert R. Tucci An Introduction to Cartan's KAK Decomposition for QC Programmers , 2005, quant-ph/0507171.

[33]  Wolfgang Ertmer,et al.  Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits. , 2002 .

[34]  W. Ertmer,et al.  Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits. , 2001, Physical review letters.

[35]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[36]  Elham Kashefi,et al.  Parallelizing quantum circuits , 2007, Theor. Comput. Sci..

[37]  D. Bruß,et al.  Lectures on Quantum Information , 2007 .

[38]  Wolfgang Dür,et al.  Universal resources for measurement-based quantum computation. , 2006, Physical review letters.

[39]  T. P. Orlando,et al.  Quantum spin chains and Majorana states in arrays of coupled qubits , 2001 .

[40]  Eric Charron,et al.  Optimizing a phase gate using quantum interference. , 2002, Physical review letters.

[41]  H. S. Allen The Quantum Theory , 1928, Nature.

[42]  H. Briegel,et al.  One-way Quantum Computation - a tutorial introduction , 2006, quant-ph/0603226.

[43]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[44]  P. Zoller,et al.  Quantum computations with atoms in optical lattices: marker qubits and molecular interactions , 2004, quant-ph/0403197.

[45]  D. D. Awschalom,et al.  Quantum information processing using quantum dot spins and cavity QED , 1999 .

[46]  J. Mompart,et al.  Quantum computing in optical microtraps based on the motional states of neutral atoms , 2002 .

[47]  K. B. Whaley,et al.  Geometric theory of nonlocal two-qubit operations , 2002, quant-ph/0209120.

[48]  A. Ekert,et al.  Scalable quantum computation with cavity QED systems , 2000 .

[49]  S. Schirmer,et al.  Two-qubit Hamiltonian tomography by Bayesian analysis of noisy data , 2009, 0902.3434.

[50]  Bart De Moor,et al.  Efficient algorithm to recognize the local Clifford equivalence of graph states , 2004 .

[51]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[52]  Sophie Schirmer,et al.  Implementation of Quantum Gates via Optimal Control in the Presence of Cross‐talk , 2008 .

[53]  Hans-J. Briegel,et al.  Computational model underlying the one-way quantum computer , 2002, Quantum Inf. Comput..

[54]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[55]  D. Markham,et al.  Graph states for quantum secret sharing , 2008, 0808.1532.

[56]  H. Briegel,et al.  Fundamentals of universality in one-way quantum computation , 2007, quant-ph/0702116.

[57]  Erika Andersson,et al.  Binary search trees for generalized measurements , 2007, 0712.2665.

[58]  D. Gross,et al.  Measurement-based quantum computation beyond the one-way model , 2007, 0706.3401.

[59]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.