How to write a coequation

There is a large amount of literature on the topic of covarieties, coequations and coequational specifications, dating back to the early seventies. Nevertheless, coequations have not (yet) emerged as an everyday practical specification formalism for computer scientists. In this review paper, we argue that this is partly due to the multitude of syntaxes for writing down coequations, which seems to have led to some confusion about what coequations are and what they are for. By surveying the literature, we identify four types of syntaxes: coequations-as-corelations, coequations-as-predicates, coequations-as-equations, and coequations-as-modal-formulas. We present each of these in a tutorial fashion, relate them to each other, and discuss their respective uses.

[1]  Alexander Kurz,et al.  Positive Fragments of Coalgebraic Logics , 2013, CALCO.

[2]  Boris I. Plotkin,et al.  Universal Algebra and Computer Science , 2001, FCT.

[3]  Clemens Grabmayer,et al.  A Complete Proof System for 1-Free Regular Expressions Modulo Bisimilarity , 2020, LICS.

[4]  Uwe Wolter,et al.  On Corelations, Cokernels, and Coequations , 2000, CMCS.

[5]  Christian D. Jakel A unified categorical approach to graphs , 2015, 1507.06328.

[6]  Bart Jacobs,et al.  The temporal logic of coalgebras via Galois algebras , 2002, Mathematical Structures in Computer Science.

[7]  Clemens Kupke,et al.  Characterising Behavioural Equivalence: Three Sides of One Coin , 2009, CALCO.

[8]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[9]  Jirí Adámek,et al.  On varieties and covarieties in a category , 2003, Mathematical Structures in Computer Science.

[10]  Jesse Hughes,et al.  A study of categories of algebras and coalgebras , 2001 .

[11]  H. Peter Gumm Equational and implicational classes of coalgebras , 2001, Theor. Comput. Sci..

[12]  Horst Reichel,et al.  Defining Equations in Terminal Coalgebras , 1994, COMPASS/ADT.

[13]  Frank Wolter,et al.  Handbook of Modal Logic , 2007, Studies in logic and practical reasoning.

[14]  Janusz A. Brzozowski,et al.  Derivatives of Regular Expressions , 1964, JACM.

[15]  Arto Salomaa,et al.  Two Complete Axiom Systems for the Algebra of Regular Events , 1966, JACM.

[16]  G. Birkhoff,et al.  On the Structure of Abstract Algebras , 1935 .

[17]  Alexander K. Petrenko,et al.  Electronic Notes in Theoretical Computer Science , 2009 .

[18]  Jesse Hughes Modal Operators for Coequations , 2001, CMCS.

[19]  R. Goldblatt Logics of Time and Computation , 1987 .

[20]  Antonino Salibra On the algebraic models of lambda calculus , 2000, Theor. Comput. Sci..

[21]  Jirí Adámek A Logic of Coequations , 2005, CSL.

[22]  Grigore Rosu A Birkhoff-like Axiomatizability Result for Hidden Algebra and Coalgebra , 1998, CMCS.

[23]  Alexander Kurz,et al.  Specifying Coalgebras with Modal Logic , 1998, CMCS.

[24]  Robert Goldblatt,et al.  Covarieties of Coalgebras: Comonads and Coequations , 2005, ICTAC.

[25]  Fredrik Dahlqvist,et al.  Completeness-via-canonicity in coalgebraic logics , 2015, ArXiv.

[26]  Multivalued operations and universal coalgebra , 1972 .

[27]  Robin Milner,et al.  A Complete Inference System for a Class of Regular Behaviours , 1984, J. Comput. Syst. Sci..

[28]  Jurriaan Rot,et al.  Duality of Equations and Coequations via Contravariant Adjunctions , 2016, CMCS.

[29]  Fredrik Dahlqvist Coalgebraic Completeness-via-Canonicity , 2016 .

[30]  Peter Aczel,et al.  Non-well-founded sets , 1988, CSLI lecture notes series.

[31]  Robert Goldblatt A comonadic account of behavioural covarieties of coalgebras , 2005, Math. Struct. Comput. Sci..

[32]  Peter Aczel,et al.  Algebras and Coalgebras , 2000, Algebraic and Coalgebraic Methods in the Mathematics of Program Construction.

[33]  Horst Herrlich,et al.  Abstract and concrete categories , 1990 .

[34]  Wan Fokkink,et al.  Introduction to Process Algebra , 1999, Texts in Theoretical Computer Science. An EATCS Series.

[35]  Dexter Kozen A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events , 1994, Inf. Comput..

[36]  Bart Jacobs,et al.  Mongruences and Cofree Coalgebras , 1995, AMAST.

[37]  Alexander Kurz,et al.  Operations and equations for coalgebras , 2005, Mathematical Structures in Computer Science.

[38]  Alexander Kurz,et al.  Algebraic Semantics for Coalgebraic Logics , 2004, CMCS.

[39]  Antonino Salibra,et al.  A Finite Equational Axiomatization of the Functional Algebras for the Lambda Calculus , 1999, Inf. Comput..

[40]  Michal Marvan On covarieties of coalgebras , 1985 .

[41]  Grigore Rosu Equational axiomatizability for coalgebra , 2001, Theor. Comput. Sci..

[42]  Wolfgang Wechler,et al.  Universal Algebra for Computer Scientists , 1992, EATCS Monographs on Theoretical Computer Science.

[43]  Giulio Manzonetto,et al.  From lambda-Calculus to Universal Algebra and Back , 2008, MFCS.

[44]  Lawrence S. Moss,et al.  Coalgebraic Logic , 1999, Ann. Pure Appl. Log..

[45]  Daniel Schwencke Coequational Logic for Finitary Functors , 2008, CMCS.

[46]  Dexter Kozen,et al.  Kleene Algebra with Tests: Completeness and Decidability , 1996, CSL.

[47]  Alexander Kurz,et al.  Ultrafilter Extensions for Coalgebras , 2005, CALCO.

[48]  H. Gumm Elements Of The General Theory Of Coalgebras , 1999 .

[49]  Alexandra Silva,et al.  Concurrent Kleene Algebra: Free Model and Completeness , 2017, ESOP.

[50]  Robert Davis,et al.  Quasi-cotripleable categories , 1972 .

[51]  Alexander Kurz,et al.  The Goldblatt-Thomason Theorem for Coalgebras , 2007, CALCO.

[52]  Dexter Kozen,et al.  Guarded Kleene Algebra with Tests: Coequations, Coinduction, and Completeness , 2021, ICALP.

[53]  James Worrell,et al.  Terminal sequences for accessible endofunctors , 1999, CMCS.

[54]  Pierre Wolper,et al.  An Automata-Theoretic Approach to Automatic Program Verification (Preliminary Report) , 1986, LICS.

[55]  Pierre Wolper,et al.  Simple on-the-fly automatic verification of linear temporal logic , 1995, PSTV.

[56]  Peter Aczel,et al.  A Final Coalgebra Theorem , 1989, Category Theory and Computer Science.

[57]  Frank Wolter,et al.  Handbook of Modal Logic, Volume 3 (Studies in Logic and Practical Reasoning) , 2006 .

[58]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[59]  J. Conway Regular algebra and finite machines , 1971 .

[60]  Ana Sokolova,et al.  Exemplaric Expressivity of Modal Logics , 2010, J. Log. Comput..

[61]  Alexander Kurz,et al.  The Positivication of Coalgebraic Logics , 2018, CALCO.

[62]  Combinatorial examples in universal coalgebra. III , 1983 .

[63]  Robert Davis Universal coalgebra and categories of transition systems , 2005, Mathematical systems theory.

[64]  Michael Barr,et al.  Terminal Coalgebras in Well-Founded Set Theory , 1993, Theor. Comput. Sci..

[65]  Justin Hsu,et al.  Guarded Kleene algebra with tests: verification of uninterpreted programs in nearly linear time , 2019, Proc. ACM Program. Lang..

[66]  Corina Cîrstea A Coequational Approach to Specifying Behaviours , 1999, CMCS.

[67]  Peter Jipsen Concurrent Kleene Algebra with Tests , 2014, RAMICS.

[68]  Jirí Adámek,et al.  Abstract and Concrete Categories - The Joy of Cats , 1990 .

[69]  Jan J. M. M. Rutten,et al.  Stream Differential Equations: Specification Formats and Solution Methods , 2014, Log. Methods Comput. Sci..

[70]  Alexander Kurz Modal Rules are Co-Implications , 2001, CMCS.

[71]  Corina Cîrstea,et al.  Modal Logics are Coalgebraic , 2008, Comput. J..

[72]  H. Peter Gumm,et al.  Products of coalgebras , 2001 .

[73]  Daniel Schwencke Coequational logic for accessible functors , 2010, Inf. Comput..

[74]  H. Peter Gumm,et al.  Covarieties and Complete Covarieties , 1998, CMCS.

[75]  Alexander Kurz A Co-Variety-Theorem for Modal Logic , 1998, Advances in Modal Logic.

[76]  Joseph Y. Halpern,et al.  Decision procedures and expressiveness in the temporal logic of branching time , 1982, STOC '82.

[77]  David J. Pym,et al.  Completeness via Canonicity for Distributive Substructural Logics: A Coalgebraic Perspective , 2015, RAMiCS.

[78]  Horst Reichel,et al.  An approach to object semantics based on terminal co-algebras , 1995, Mathematical Structures in Computer Science.

[79]  Jiří Adámek Birkhoff's Covariety Theorem without limitations , 2005 .

[80]  Dirk Pattinson,et al.  Coalgebraic modal logic: soundness, completeness and decidability of local consequence , 2003, Theor. Comput. Sci..

[81]  J. Adámek,et al.  Automata and Algebras in Categories , 1990 .

[82]  Julian Salamanca,et al.  Unveiling Eilenberg-type Correspondences: Birkhoff's Theorem for (finite) Algebras + Duality , 2017, ArXiv.

[83]  Jirí Adámek,et al.  On tree coalgebras and coalgebra presentations , 2004, Theor. Comput. Sci..

[84]  Stefan Milius,et al.  Varieties of Languages in a Category , 2015, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science.

[85]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[86]  Jiří Adámek,et al.  From Varieties of Algebras to Covarieties of Coalgebras , 2001, CMCS.

[87]  Alexandra Silva,et al.  A Coalgebraic Decision Procedure for NetKAT , 2015, POPL.

[88]  Yasuo Kawahara,et al.  A small final coalgebra theorem , 1994, Theor. Comput. Sci..

[89]  H. Gumm Functors for Coalgebras , 2001 .

[90]  Jesse Hughes,et al.  The Coalgebraic Dual Of Birkhoff's Variety Theorem , 2000 .

[91]  Jan J. M. M. Rutten,et al.  The dual equivalence of equations and coequations for automata , 2014, Inf. Comput..

[92]  Marcello M. Bonsangue,et al.  Regular Varieties of Automata and Coequations , 2015, MPC.