Groundwork for weak analysis

This paper develops the very basic notions of analysis in a weak second-order theory of arithmetic BTFA whose provably total functions are the polynomial time computable functions. We formalize within BTFA the real number system and the notion of a continuous real function of a real variable. The theory BTFA is able to prove the intermediate value theorem, wherefore it follows that the system of real numbers is a real closed ordered field. In the last section of the paper, we show how to interpret the theory BTFA in Robinson's theory of arithmetic Q. This fact entails that the elementary theory of the real closed ordered fields is interpretable in Q.

[1]  Stephen G. Simpson,et al.  Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.

[2]  George Boolos,et al.  Computability and logic , 1974 .

[3]  Takeshi Yamazaki Some More Conservation Results on the Baire Category Theorem , 2000 .

[4]  Peter A. Cholak Review: Stephen G. Simpson, Subsystems of Second Order Arithmetic , 1999, Journal of Symbolic Logic.

[5]  Kostas Hatzikiriakou Algebraic disguises ofΣ10 induction , 1989, Arch. Math. Log..

[6]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[7]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[8]  Stephen G. Simpson,et al.  Factorization of polynomials and Σ10 induction , 1986, Ann. Pure Appl. Log..

[9]  Ker-I Ko,et al.  Complexity Theory of Real Functions , 1991, Progress in Theoretical Computer Science.

[10]  Ulrich Kohlenbach,et al.  Arithmetizing proofs in analysis , 1998 .

[11]  Petr Hájek,et al.  Metamathematics of First-Order Arithmetic , 1993, Perspectives in mathematical logic.

[12]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[13]  Andrea Cantini,et al.  Asymmetric Interpretations for Bounded Theories , 1996, Math. Log. Q..

[14]  George Wilmers,et al.  Models OF Peano Arithmetic (Oxford Logic Guides 15) , 1993 .

[15]  George Boolos,et al.  Computability and logic (2. ed.) , 1987 .

[16]  Fernando Ferreira,et al.  On End-Extensions of Models of ¬exp , 1996, Math. Log. Q..

[17]  Richard Kaye Models of Peano arithmetic , 1991, Oxford logic guides.

[18]  Stephen G. Simpson,et al.  Polynomial time computable arithmetic and conservative extensions , 1988 .

[19]  Stephen G. Simpson,et al.  Chapter 21 Reverse algebra , 1998 .

[20]  L. M. Milne-Thomson,et al.  Grundlagen der Mathematik , 1935, Nature.

[21]  Takeshi Yamazaki Some More Conservation Results on the Baire Category Theorem , 2000, Math. Log. Q..

[22]  Ulrich Kohlenbach,et al.  Proof theory and computational analysis , 1997, COMPROX.

[23]  Ulrich Kohlenbach,et al.  Mathematically strong subsystems of analysis with low rate of growth of provably recursive functionals , 1996, Arch. Math. Log..

[24]  P. Clote,et al.  Arithmetic, proof theory, and computational complexity , 1993 .

[25]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .