Pros and cons of estimating the reproduction number from early epidemic growth rate of influenza A (H1N1) 2009

[1]  David Buckeridge,et al.  Estimated epidemiologic parameters and morbidity associated with pandemic H1N1 influenza , 2010, Canadian Medical Association Journal.

[2]  G. Chowell,et al.  Does Glycosylation as a modifier of Original Antigenic Sin explain the case age distribution and unusual toxicity in pandemic novel H1N1 influenza? , 2010, BMC infectious diseases.

[3]  Carlos Castillo-Chavez,et al.  Discrete epidemic models. , 2010, Mathematical biosciences and engineering : MBE.

[4]  J Wallinga,et al.  Distribution of vaccine/antivirals and the ‘least spread line’ in a stratified population , 2010, Journal of The Royal Society Interface.

[5]  Paul A. Biedrzycki,et al.  The severity of pandemic H1N1 influenza in the United States, April – July 2009 , 2010, PLoS currents.

[6]  J. Wallinga,et al.  The ideal reporting interval for an epidemic to objectively interpret the epidemiological time course , 2010, Journal of The Royal Society Interface.

[7]  M. Lipsitch,et al.  The Severity of Pandemic H1N1 Influenza in the United States, from April to July 2009: A Bayesian Analysis , 2009, PLoS medicine.

[8]  T. Smieszek A mechanistic model of infection: why duration and intensity of contacts should be included in models of disease spread , 2009, Theoretical Biology and Medical Modelling.

[9]  Gail E. Potter,et al.  The Transmissibility and Control of Pandemic Influenza A (H1N1) Virus , 2009, Science.

[10]  M. Hellard,et al.  Early transmission characteristics of influenza A(H1N1)v in Australia: Victorian state, 16 May - 3 June 2009. , 2009, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[11]  M. Pagano,et al.  Estimation of the reproductive number and the serial interval in early phase of the 2009 influenza A/H1N1 pandemic in the USA , 2009, Influenza and other respiratory viruses.

[12]  Konstantin G Gurevich,et al.  Formal kinetics of H1N1 epidemic , 2009, Theoretical Biology and Medical Modelling.

[13]  Alessandro Vespignani,et al.  influenza A(H1N1): a Monte Carlo likelihood analysis based on , 2009 .

[14]  Hiroshi Nishiura,et al.  Early Epidemiological Assessment of the Virulence of Emerging Infectious Diseases: A Case Study of an Influenza Pandemic , 2009, PloS one.

[15]  Hideo Goto,et al.  In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses , 2009, Nature.

[16]  Nathaniel Hupert,et al.  Initial human transmission dynamics of the pandemic (H1N1) 2009 virus in North America , 2009, Influenza and other respiratory viruses.

[17]  G. Chowell,et al.  Epidemiological and transmissibility analysis of influenza A(H1N1)v in a southern hemisphere setting: Peru. , 2009, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[18]  U C de Silva,et al.  A preliminary analysis of the epidemiology of influenza A(H1N1)v virus infection in Thailand from early outbreak data, June-July 2009. , 2009, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[19]  Nick Wilson,et al.  Estimating the reproduction number of the novel influenza A virus (H1N1) in a Southern Hemisphere setting: preliminary estimate in New Zealand. , 2009, The New Zealand medical journal.

[20]  Simon Cauchemez,et al.  Assessing the severity of the novel influenza A/H1N1 pandemic , 2009, BMJ : British Medical Journal.

[21]  J Wallinga,et al.  Epidemiology and control of influenza A(H1N1)v in the Netherlands: the first 115 cases. , 2009, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[22]  R. Scholz,et al.  Theoretical Biology and Medical Modelling Models of Epidemics: When Contact Repetition and Clustering Should Be Included , 2022 .

[23]  E. Lyons,et al.  Pandemic Potential of a Strain of Influenza A (H1N1): Early Findings , 2009, Science.

[24]  M. Safan,et al.  Transmission potential of the new influenza A(H1N1) virus and its age-specificity in Japan. , 2009, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[25]  H. Nishiura,et al.  How to find natural reservoir hosts from endemic prevalence in a multi-host population: a case study of influenza in waterfowl. , 2009, Epidemics.

[26]  J. Desenclos,et al.  A preliminary estimation of the reproduction ratio for new influenza A(H1N1) from the outbreak in Mexico, March-April 2009. , 2009, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[27]  Hong Sun,et al.  Serum cross-reactive antibody response to a novel influenza A (H1N1) virus after vaccination with seasonal influenza vaccine. , 2009 .

[28]  Mathematical modelling of the pandemic H1N1 2009. , 2009, Releve epidemiologique hebdomadaire.

[29]  Transmission dynamics and impact of pandemic influenza A (H1N1) 2009 virus. , 2009, Releve epidemiologique hebdomadaire.

[30]  Tom Britton,et al.  Modelling sexually transmitted infections: the effect of partnership activity and number of partners on R0. , 2007, Theoretical population biology.

[31]  R. Mikolajczyk,et al.  Social contacts of school children and the transmission of respiratory-spread pathogens , 2007, Epidemiology and Infection.

[32]  H. Nishiura Time variations in the transmissibility of pandemic influenza in Prussia, Germany, from 1918–19 , 2007, Theoretical biology & medical modelling.

[33]  Tim Lant,et al.  Towards Real Time Epidemiology: Data Assimilation, Modeling and Anomaly Detection of Health Surveillance Data Streams , 2007, BioSurveillance.

[34]  Karan P. Singh,et al.  Theoretical Biology and Medical Modelling , 2007 .

[35]  M. Lipsitch,et al.  How generation intervals shape the relationship between growth rates and reproductive numbers , 2007, Proceedings of the Royal Society B: Biological Sciences.

[36]  M. Kretzschmar,et al.  Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents. , 2006, American journal of epidemiology.

[37]  M. Keeling The implications of network structure for epidemic dynamics. , 2005, Theoretical population biology.

[38]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[39]  Gerardo Chowell,et al.  Worst-Case Scenarios and Epidemics , 2003 .

[40]  O. Diekmann,et al.  Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation , 2000 .

[41]  T. Britton On critical vaccination coverage in multitype epidemics , 1998, Journal of Applied Probability.

[42]  O. Diekmann Mathematical Epidemiology of Infectious Diseases , 1996 .

[43]  F. Ball,et al.  The final size and severity of a generalised stochastic multitype epidemic model , 1993, Advances in Applied Probability.

[44]  S. Busenberg,et al.  A general solution of the problem of mixing of subpopulations and its application to risk- and age-structured epidemic models for the spread of AIDS. , 1991, IMA journal of mathematics applied in medicine and biology.

[45]  O. Diekmann,et al.  On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations , 1990, Journal of mathematical biology.

[46]  J. Yorke,et al.  Gonorrhea Transmission Dynamics and Control , 1984 .

[47]  I. Longini,et al.  An optimization model for influenza A epidemics , 1978 .