Legendre polynomials, Legendre--Stirling numbers, and the left-definite spectral analysis of the Legendre differential expression

In this paper, we develop the left-definite spectral theory associated with the self-adjoint operator A(k) in L2(- 1, 1), generated from the classical second-order Legendre differential equation lL,k[y](t) = -((1 - t2)y')' + ky = λy (t∈ (-1,1)), that has the Legendre polynomials {Pm(t)}m=0∞ as eigenfunctions; here, k is a fixed, nonnegative constant. More specifically, for k > 0, we explicitly determine the unique left-definite Hilbert-Sobolev space Wn(k) and its associated inner product (.,.)n,k for each n ∈ N. Moreover, for each n ∈ N, we determine the corresponding unique left-definite self-adjoint operator An(k) in Wn(k) and characterize its domain in terms of another left-definite space. The key to determining these spaces and inner products is in finding the explicit Lagrangian symmetric form of the integral composite powers of lL,k[.]. In turn, the key to determining these powers is a remarkable new identity involving a double sequence of numbers which we call Legendre-Stirling numbers.

[1]  Lance L. Littlejohn,et al.  The left-definite spectral theory for the classical Hermite differential equation , 2000 .

[2]  Anton Zettl,et al.  Singular Sturm-Liouville problems : the Friedrichs extension and comparison of eigenvalues , 1992 .

[3]  H. Weyl,et al.  Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen , 1910 .

[4]  L. Comtet,et al.  Advanced Combinatorics: The Art of Finite and Infinite Expansions , 1974 .

[5]  Lance L. Littlejohn,et al.  On Properties of the Legendre Differential Expression , 2002 .

[6]  W. Rudin Real and complex analysis, 3rd ed. , 1987 .

[7]  Lance L. Littlejohn,et al.  A General Left-Definite Theory for Certain Self-Adjoint Operators with Applications to Differential Equations , 2002 .

[8]  Francisco Marcellán,et al.  On the Right-Definite and Left-Definite Spectral Theory of the Legendre Polynomials , 2002 .

[9]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[10]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[11]  G. Weiss,et al.  EIGENFUNCTION EXPANSIONS. Associated with Second-order Differential Equations. Part I. , 1962 .

[12]  I. M. Glazman,et al.  Theory of linear operators in Hilbert space , 1961 .

[13]  W. Rudin Real and complex analysis , 1968 .

[14]  P. Goldbart,et al.  Linear differential operators , 1967 .

[15]  Wn Everitt,et al.  Legendre polynomials and singular differential operators , 1980 .