Adjustable diffractive spiral phase plates.

We report on the fabrication and the experimental demonstration of Moiré diffractive spiral phase plates with adjustable helical charge. The proposed optical unit consists of two axially stacked diffractive elements of conjugate structure. The joint transmission function of the compound system corresponds to that of a spiral phase plate where the angle of mutual rotation about the central axis enables continuous adjustment of the helical charge. The diffractive elements are fabricated by gray-scale photolithography with a pixel size of 200 nm and 128 phase step levels in fused silica. We experimentally demonstrate the conversion of a TEM(00) beam into approximated Laguerre-Gauss (LG) beams of variable helical charge, with a correspondingly variable radius of their ring-shaped intensity distribution.

[1]  Michael Zürch,et al.  Strong-field physics with singular light beams , 2012, Nature Physics.

[2]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[4]  M. S. Soskin,et al.  Structure of optical vortices produced by holographic gratings with , 2009 .

[5]  M. Padgett,et al.  Orbital angular momentum: origins, behavior and applications , 2011 .

[6]  S Bernet,et al.  Upgrading a microscope with a spiral phase plate , 2008, Journal of microscopy.

[7]  M J Padgett,et al.  Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. , 2002, Physical review letters.

[8]  Z. Sacks,et al.  Holographic formation of optical-vortex filaments , 1998 .

[9]  Thomas Milster,et al.  Generation of multiterawatt vortex laser beams. , 2014, Applied optics.

[10]  W. M. Lee,et al.  Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation. , 2004, Optics letters.

[11]  Monika Ritsch-Marte,et al.  Demonstration of focus-tunable diffractive Moiré-lenses. , 2013, Optics express.

[12]  Xu Liu,et al.  Effects of polarization on the de-excitation dark focal spot in STED microscopy , 2010 .

[13]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[14]  A. Willner,et al.  100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. , 2014, Optics letters.

[15]  Monika Ritsch-Marte,et al.  Adjustable refractive power from diffractive moiré elements. , 2008, Applied optics.

[16]  Changhe Zhou,et al.  Three-dimensional Dammann vortex array with tunable topological charge. , 2012, Applied optics.

[17]  S. Bernet,et al.  Shadow effects in spiral phase contrast microscopy. , 2005, Physical review letters.

[18]  G. Pedrini,et al.  Spiral phase filtering and orientation-selective edge detection/enhancement. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[19]  David M. Shemo,et al.  THE VECTOR VORTEX CORONAGRAPH: LABORATORY RESULTS AND FIRST LIGHT AT PALOMAR OBSERVATORY , 2009, 0912.2287.

[20]  Miles J. Padgett,et al.  Observation of the vortex structure of a non-integer vortex beam , 2004 .

[21]  Zhi‐zhan Xu,et al.  Light fan driven by a relativistic laser pulse. , 2014, Physical review letters.

[22]  Valentina Emiliani,et al.  STED microscope with Spiral Phase Contrast , 2013, Scientific Reports.

[23]  Andrew G. White,et al.  Generation of optical phase singularities by computer-generated holograms. , 1992, Optics letters.

[24]  R. Burge,et al.  Extending the detection range of optical vortices by Dammann vortex gratings. , 2010, Optics letters.

[25]  Grover A. Swartzlander,et al.  Optical vortex coronagraphy with an elliptical aperture. , 2013, Applied optics.