On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces
暂无分享,去创建一个
[1] Angelo Profeta. The Sharp Sobolev Inequality on Metric Measure Spaces with Lower Ricci Curvature Bounds , 2015 .
[2] L. Ambrosio,et al. Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds , 2012, 1209.5786.
[3] L. Ambrosio,et al. Riemannian Ricci curvature lower bounds in metric measure spaces with -finite measure , 2012, 1207.4924.
[4] Arnaud Guillin,et al. Dimensional contraction via Markov transportation distance , 2013, J. Lond. Math. Soc..
[5] L. Ambrosio,et al. Metric measure spaces with Riemannian Ricci curvature bounded from below , 2011, 1109.0222.
[6] Nicola Gigli,et al. Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below , 2011, 1106.2090.
[7] Karl-Theodor Sturm,et al. Ricci Bounds for Euclidean and Spherical Cones , 2010, 1003.2114.
[8] Kazumasa Kuwada. Space-time Wasserstein controls and Bakry–Ledoux type gradient estimates , 2013, 1308.5471.
[9] Characterizations of Bounded Ricci Curvature on Smooth and NonSmooth Spaces , 2013, 1306.6512.
[10] A. Mondino,et al. Li–Yau and Harnack type inequalities in RCD∗(K,N) metric measure spaces , 2013, 1306.0494.
[11] L. Ambrosio,et al. A User’s Guide to Optimal Transport , 2013 .
[12] Karl-Theodor Sturm,et al. Non-branching geodesics and optimal maps in strong C D ( K , ∞ ) -spaces , 2013 .
[13] C. Ketterer. Ricci curvature bounds for warped products , 2012, 1209.1325.
[14] P. Koskela,et al. Geometry and Analysis of Dirichlet forms , 2012, 1208.4955.
[15] Non-branching geodesics and optimal maps in strong CD(K,{\infty})-spaces , 2012 .
[16] N. Gigli. On the differential structure of metric measure spaces and applications , 2012, 1205.6622.
[17] Karl-Theodor Sturm,et al. Local curvature-dimension condition implies measure-contraction property , 2011, 1112.4991.
[18] T. Rajala. Local Poincaré inequalities from stable curvature conditions on metric spaces , 2011, 1107.4842.
[19] Karl-Theodor Sturm,et al. Bochner-Weitzenb\"ock formula and Li-Yau estimates on Finsler manifolds , 2011, 1105.0983.
[20] Ricci Bounds for Euclidean and Spherical Cones (revised/extended version) , 2011, 1103.0197.
[21] Feng-Yu Wang. Equivalent semigroup properties for the curvature-dimension condition , 2010, 1012.5686.
[22] Xiping Zhu,et al. Yau's gradient estimates on Alexandrov spaces , 2010, 1012.4233.
[23] Nicola Gigli,et al. On the heat flow on metric measure spaces: existence, uniqueness and stability , 2010 .
[24] Nicola Gigli,et al. Heat Flow on Alexandrov Spaces , 2010, 1008.1319.
[25] Anton Petrunin,et al. Alexandrov meets Lott-Villani-Sturm , 2010, 1003.5948.
[26] Karl-Theodor Sturm,et al. Localization and Tensorization Properties of the Curvature-Dimension Condition for Metric Measure Spaces , 2010, 1003.2116.
[27] Xiping Zhu,et al. Ricci Curvature on Alexandrov spaces and Rigidity Theorems , 2009, 0912.3190.
[28] Kazumasa Kuwada,et al. Duality on gradient estimates and Wasserstein controls , 2009, 0910.1741.
[29] Shin-Ichi Ohta,et al. Finsler interpolation inequalities , 2009 .
[30] C. Villani. Optimal Transport: Old and New , 2008 .
[31] Sara Daneri,et al. Eulerian Calculus for the Displacement Convexity in the Wasserstein Distance , 2008, SIAM J. Math. Anal..
[32] Michel Ledoux,et al. A logarithmic Sobolev form of the Li-Yau parabolic inequality , 2006 .
[33] Karl-Theodor Sturm,et al. On the geometry of metric measure spaces. II , 2006 .
[34] Karl-Theodor Sturm,et al. On the geometry of metric measure spaces , 2006 .
[35] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[36] Felix Otto,et al. Eulerian Calculus for the Contraction in the Wasserstein Distance , 2005, SIAM J. Math. Anal..
[37] C. Villani,et al. Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.
[38] Arcwise Isometries,et al. A Course in Metric Geometry , 2001 .
[39] Cédric Villani,et al. A short proof of the "Concavity of entropy power" , 2000, IEEE Trans. Inf. Theory.
[40] C. Villani,et al. Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .
[41] Pekka Koskela,et al. Sobolev met Poincaré , 2000 .
[42] D. Kinderlehrer,et al. THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .
[43] D. Bakry. L'hypercontractivité et son utilisation en théorie des semigroupes , 1994 .
[44] Amir Dembo,et al. Information theoretic inequalities , 1991, IEEE Trans. Inf. Theory.
[45] E. Davies,et al. Heat kernels and spectral theory , 1989 .
[46] P. Bérard. Spectral Geometry: Direct and Inverse Problems , 1986 .
[47] S. Yau,et al. On the parabolic kernel of the Schrödinger operator , 1986 .