Approaches and challenges in optical modelling and simulation of thin-film solar cells

Abstract Optical modelling and simulations present an indispensable tool in the design, analysis and optimisation of thin-film solar cells of different technologies. In this paper highlights and challenges of different numerical modelling approaches are reviewed, from one-dimensional to rigorous two- or three-dimensional optical modelling. A concept of Coupled Modelling Approach (CMA) is proposed to be used, in which different optical models are coupled together to achieve best performance in speed and accuracy of simulations. A Combined Ray-Optics Wave-optics Model (CROWM) is presented as a simple example of the CMA. In the second part two examples of modelling and simulations are presented. To demonstrate the applicability of 3-D rigorous optical modelling, results of optimisation of periodic substrate surface texture in a micromorph silicon solar cell are shown. Furthermore, a model of non-conformal layer growth is employed to determine morphologies of internal interfaces and to make a selection of suitable textures for defect-less thin-film silicon layer growth. The CROWM simulator was employed to demonstrate the usability of coupled modelling on the example of optimisation of macro-textures in organic solar cells.

[1]  J. Krč,et al.  Prediction of defective regions in optimisation of surface textures in thin-film silicon solar cells using combined model of layer growth , 2014 .

[2]  J. Krč,et al.  Study of enhanced light scattering in microcrystalline silicon solar cells , 2004 .

[3]  P. Buehlmann,et al.  In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells , 2007 .

[4]  C. Battaglia,et al.  Erratum: “Modeling of light scattering from micro- and nanotextured surfaces” [J. Appl. Phys. 107, 044504 (2010)] , 2010 .

[5]  J. Krč,et al.  Optical simulation of the role of reflecting interlayers in tandem micromorph silicon solar cells , 2005 .

[6]  J. Krč,et al.  Optical Modeling and Simulation of Thin-Film Photovoltaic Devices , 2013 .

[7]  F. Lederer,et al.  Light absorption in textured thin film silicon solar cells: A simple scalar scattering approach versus rigorous simulation , 2011 .

[8]  M. Zeman,et al.  Optical modeling of a-Si:H solar cells with rough interfaces: Effect of back contact and interface roughness , 2000 .

[9]  J. Krč,et al.  Optimisation of Periodic Surface Textures in Thin-film Silicon Solar Cells Using Rigorous Optical Modelling by Considering Realistic Layer Growth , 2014 .

[10]  Marko Topič,et al.  Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations , 2009 .

[11]  Helmut Stiebig,et al.  Optical properties of thin‐film silicon solar cells with grating couplers , 2006 .

[12]  P. Beckmann,et al.  The scattering of electromagnetic waves from rough surfaces , 1963 .

[13]  M. Zeman,et al.  A scattering model for nano-textured interfaces and its application in opto-electrical simulations of thin-film silicon solar cells , 2012 .

[14]  Dietmar Knipp,et al.  Optical enhancement and losses of pyramid textured thin-film silicon solar cells , 2011 .

[15]  Helmut Stiebig,et al.  Thin-film silicon solar cells with efficient periodic light trapping texture , 2007 .

[16]  Qingkang Wang,et al.  Microstructured design for light trapping in thin-film silicon solar cells , 2010 .

[17]  M. Zeman,et al.  A scattering model for surface-textured thin films , 2009 .

[18]  Christoph Pflaum,et al.  An iterative solver for the finite-difference frequency-domain (FDFD) method for the simulation of materials with negative permittivity , 2011, Numer. Linear Algebra Appl..

[19]  Light trapping in solar cells at the extreme coupling limit , 2012, 1210.8276.

[20]  F. Smole,et al.  Amorphous silicon solar cell computer model incorporating the effects of TCO/a-Si:C:H junction , 1994 .

[21]  J. Krč,et al.  Modeling plasmonic scattering combined with thin-film optics , 2011, Nanotechnology.

[22]  G. Tao,et al.  Accurate generation rate profiles in a-Si :H solar cells with textured TCO substrates , 1994 .

[23]  M. Zeman,et al.  Effect of surface roughness of ZnO:Al films on light scattering in hydrogenated amorphous silicon solar cells , 2003 .

[24]  Christophe Ballif,et al.  Optical management in high‐efficiency thin‐film silicon micromorph solar cells with a silicon oxide based intermediate reflector , 2008 .

[25]  Three dimensional optical modeling of amorphous silicon thin film solar cells using the finite-difference time-domain method including real randomly surface topographies , 2011 .

[26]  Lei Zhao,et al.  A highly efficient light-trapping structure for thin-film silicon solar cells , 2010 .

[27]  Diego Caratelli,et al.  3‐D optical modeling of thin‐film silicon solar cells on diffraction gratings , 2013 .

[28]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[29]  J. Springer,et al.  Improved three-dimensional optical model for thin-film silicon solar cells , 2004 .

[30]  Janez Krč,et al.  Optical and electrical modeling of thin-film silicon solar cells , 2008 .

[31]  Christophe Ballif,et al.  Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells , 2009 .

[32]  Marko Topič,et al.  Analysis of light scattering in amorphous Si:H solar cells by a one‐dimensional semi‐coherent optical model , 2003 .

[33]  Marko Topič,et al.  Two Approaches for Incoherent Propagation of Light in Rigorous Numerical Simulations , 2013 .

[34]  G. Cody,et al.  Intensity enhancement in textured optical sheets for solar cells , 1982, IEEE Transactions on Electron Devices.

[35]  J. Krč,et al.  Combined model of non-conformal layer growth for accurate optical simulation of thin-film silicon solar cells , 2013 .

[36]  Christophe Ballif,et al.  Extended light scattering model incorporating coherence for thin-film silicon solar cells , 2011 .

[37]  Evgeny Popov,et al.  Light Propagation in Periodic Media , 2002 .

[38]  M. Kondo,et al.  Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells , 2013 .

[39]  C. Brabec,et al.  Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells , 2007 .

[40]  Optical modeling of thin-film silicon solar cells with submicron periodic gratings and nonconformal layers , 2011 .

[41]  C. Battaglia,et al.  Modeling of light scattering from micro- and nanotextured surfaces , 2010 .

[42]  P. Blom,et al.  Combined optical and electrical modeling of polymer: fullerene bulk heterojunction solar cells , 2008 .

[43]  Thomas Kirchartz,et al.  Advanced Characterization Techniques for Thin Film Solar Cells , 2016 .

[44]  D. Hall,et al.  Thermodynamic limit to light trapping in thin planar structures , 1997 .

[45]  M. Zeman,et al.  Advanced Numerical Simulation Tool for Solar Cells - ASA5 , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[46]  Jian-Ming Jin,et al.  The Finite Element Method in Electromagnetics , 1993 .

[47]  M. Zeman,et al.  Optical modeling of a-Si:H solar cells deposited on textured glass/SnO2 substrates , 2002 .

[48]  Miro Zeman,et al.  Optical model for multilayer structures with coherent, partly coherent and incoherent layers. , 2013, Optics express.

[49]  Max Born,et al.  Principles of optics - electromagnetic theory of propagation, interference and diffraction of light (7. ed.) , 1999 .