Structural basis for the molecular recognition between human splicing factors U2AF65 and SF1/mBBP.

[1]  P. Zamore,et al.  Identification, purification, and biochemical characterization of U2 small nuclear ribonucleoprotein auxiliary factor. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[2]  P. Evans,et al.  Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A , 1990, Nature.

[3]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[4]  A. Krämer,et al.  Purification of splicing factor SF1, a heat-stable protein that functions in the assembly of a presplicing complex , 1992, Molecular and cellular biology.

[5]  Michael R. Green,et al.  Cloning and domain structure of the mammalian splicing factor U2AF , 1992, Nature.

[6]  E. Birney,et al.  Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. , 1993, Nucleic acids research.

[7]  Nobutoshi Ito,et al.  Crystal structure at 1.92 Å resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin , 1994, Nature.

[8]  E. Grishin,et al.  Three-dimensional structure of ectatomin from Ectatomma tuberculatum ant venom , 1995, Journal of biomolecular NMR.

[9]  K Wüthrich,et al.  The program XEASY for computer-supported NMR spectral analysis of biological macromolecules , 1995, Journal of biomolecular NMR.

[10]  C. Sander,et al.  Dali: a network tool for protein structure comparison. , 1995, Trends in biochemical sciences.

[11]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[12]  A. Krämer,et al.  The structure and function of proteins involved in mammalian pre-mRNA splicing. , 1996, Annual review of biochemistry.

[13]  J. Thornton,et al.  AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR , 1996, Journal of biomolecular NMR.

[14]  Michael R. Green,et al.  Interaction of U2AF65 RS Region with Pre-mRNA of Branch Point and Promotion Base Pairing with U2 snRNA , 1996, Science.

[15]  G. Varani,et al.  Solution structure of the N-terminal RNP domain of U1A protein: the role of C-terminal residues in structure stability and RNA binding. , 1996, Journal of molecular biology.

[16]  M. Billeter,et al.  MOLMOL: a program for display and analysis of macromolecular structures. , 1996, Journal of molecular graphics.

[17]  M. Rosbash,et al.  The Splicing Factor BBP Interacts Specifically with the Pre-mRNA Branchpoint Sequence UACUAAC , 1997, Cell.

[18]  Jack Greenblatt,et al.  Methods for Measurement of Intermolecular NOEs by Multinuclear NMR Spectroscopy: Application to a Bacteriophage λ N-Peptide/boxB RNA Complex , 1997 .

[19]  G. Varani,et al.  Structural basis of the RNA‐binding specificity of human U1A protein , 1997, The EMBO journal.

[20]  O. Gavet,et al.  KIS Is a Protein Kinase with an RNA Recognition Motif* , 1997, The Journal of Biological Chemistry.

[21]  J. Potashkin,et al.  Molecular characterization of a novel fission yeast gene spUAP2 that interacts with the splicing factor spU2AF59 , 1997, Current Genetics.

[22]  P. Legrain,et al.  Conservation of functional domains involved in RNA binding and protein-protein interactions in human and Saccharomyces cerevisiae pre-mRNA splicing factor SF1. , 1998, RNA.

[23]  J. Thompson,et al.  Multiple sequence alignment with Clustal X. , 1998, Trends in biochemical sciences.

[24]  M. Rosbash,et al.  A cooperative interaction between U2AF65 and mBBP/SF1 facilitates branchpoint region recognition. , 1998, Genes & development.

[25]  J Schultz,et al.  SMART, a simple modular architecture research tool: identification of signaling domains. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[26]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[27]  Peer Bork,et al.  SMART, a simple modular architecture research tool , 1998 .

[28]  Philip R. Evans,et al.  Crystal structure of the spliceosomal U2B″–U2A′ protein complex bound to a fragment of U2 small nuclear RNA , 1998, Nature.

[29]  Or Gozani,et al.  A Potential Role for U2AF-SAP 155 Interactions in Recruiting U2 snRNP to the Branch Site , 1998, Molecular and Cellular Biology.

[30]  J. Valcárcel,et al.  Inhibition of msl-2 splicing by Sex-lethal reveals interaction between U2AF35 and the 3′ splice site AG , 1999, Nature.

[31]  A. Krämer,et al.  Splicing factor SF1 from Drosophila and Caenorhabditis: presence of an N-terminal RS domain and requirement for viability. , 1999, RNA.

[32]  Christian Griesinger,et al.  Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients , 1999 .

[33]  W. Johnson,et al.  Diffusion mechanisms in metallic supercooled liquids and glasses , 1999, Nature.

[34]  P. Sharp,et al.  PUF60: a novel U2AF65-related splicing activity. , 1999, RNA.

[35]  P. Milburn,et al.  Phosphorylation of splicing factor SF1 on Ser20 by cGMP‐dependent protein kinase regulates spliceosome assembly , 1999, The EMBO journal.

[36]  Thomas Blumenthal,et al.  Both subunits of U2AF recognize the 3′ splice site in Caenorhabditis elegans , 1999, Nature.

[37]  A. Bax,et al.  Protein backbone angle restraints from searching a database for chemical shift and sequence homology , 1999, Journal of biomolecular NMR.

[38]  Michael R. Green,et al.  Functional recognition of the 3′ splice site AG by the splicing factor U2AF35 , 1999, Nature.

[39]  Shigeyuki Yokoyama,et al.  Solution structures of the first and second RNA‐binding domains of human U2 small nuclear ribonucleoprotein particle auxiliary factor (U2AF65) , 1999, The EMBO journal.

[40]  B. Séraphin,et al.  Transient interaction of BBP/ScSF1 and Mud2 with the splicing machinery affects the kinetics of spliceosome assembly. , 1999, RNA.

[41]  S. Guth,et al.  Kinetic Role for Mammalian SF1/BBP in Spliceosome Assembly and Function after Polypyrimidine Tract Recognition by U2AF* , 2000, The Journal of Biological Chemistry.

[42]  J. Valcárcel,et al.  Alternative pre-mRNA splicing: the logic of combinatorial control. , 2000, Trends in biochemical sciences.

[43]  S. Curry,et al.  Structure of tandem RNA recognition motifs from polypyrimidine tract binding protein reveals novel features of the RRM fold , 2000, The EMBO journal.

[44]  R. Reed,et al.  Mechanisms of fidelity in pre-mRNA splicing. , 2000, Current opinion in cell biology.

[45]  M Nilges,et al.  Automated assignment of ambiguous nuclear overhauser effects with ARIA. , 2001, Methods in enzymology.

[46]  S Cusack,et al.  Crystal structure of the human nuclear cap binding complex. , 2001, Molecular cell.

[47]  Michael R. Green,et al.  A Novel Peptide Recognition Mode Revealed by the X-Ray Structure of a Core U2AF35/U2AF65 Heterodimer , 2001, Cell.

[48]  Ana C. Messias,et al.  Structural Basis for Recognition of the Intron Branch Site RNA by Splicing Factor 1 , 2001, Science.

[49]  E. Kellenberger,et al.  Induced folding of the U2AF35 RRM upon binding to U2AF65 , 2002, FEBS letters.

[50]  J. Valcárcel,et al.  Splicing Regulation at the Second Catalytic Step by Sex-lethal Involves 3′ Splice Site Recognition by SPF45 , 2002, Cell.

[51]  J. Vilardell,et al.  Pre‐spliceosome formation in S.pombe requires a stable complex of SF1–U2AF59–U2AF23 , 2002, The EMBO journal.

[52]  S. van Smaalen,et al.  Crystal structure of Ca5Nb5O17 , 2005 .