Scaling laws in X-ray galaxy clusters at redshift between 0.4 and 1.3

We present a study of the integrated physical properties of a sample of 28 X-ray galaxy clusters observed with Chandra  at a redshift between 0.4 and 1.3. In particular, we have twelve objects in the redshift range 0.4–0.6, five between 0.6 and 0.8, seven between 0.8 and 1 and four at $z>1.0$, compounding the largest sample available for such a study. We focus particularly on the properties and evolution of the X-ray scaling laws. We fit both a single and a double $\beta-$model with the former which provides a good representation of the observed surface brightness profiles, indicating that these clusters do not show any significant excess in their central brightness. By using the best-fit parameters of the $\beta-$model together with the measured emission-weighted temperature (in the range 3–11 keV), we recover gas luminosity, gas mass and total gravitating mass out to  R 500 . We observe scaling relations steeper than expected from the self-similar model by a significant (>$3 \sigma$) amount in the $L-T$ and $M_{\rm gas}-T$ relations and by a marginal value in the $M_{\rm tot}-T$ and $L-M_{\rm tot}$ relations. The degree of evolution of the $M_{\rm tot}-T$ relation is found to be consistent with the expectation based on the hydrostatic equilibrium for gas within virialized dark matter halos. We detect hints of negative evolution in the $L-T$, $M_{\rm gas}-T$ and $L-M_{\rm tot}$ relations, thus suggesting that systems at higher redshift have lower X-ray luminosity and gas mass for fixed temperature. In particular, when the 16 clusters at $z>0.6$ are considered, the evolution becomes more evident and its power-law modelization is a statistically good description of the data. In this subsample, we also find significant evidence for positive evolution, such as $(1\,+\,z)^{0.3}$, in the $E_z^{4/3} S - T$ relation, where the entropy  S is defined as $T/n_{\rm gas}^{2/3}$ and is measured at 0.1$\,R_{200}$. Such results point toward a scenario in which a relatively lower gas density is present in high-redshift objects, thus implying a suppressed X-ray emission, a smaller amount of gas mass and a higher entropy level. This represents a non-trivial constraint for models aiming at explaining the thermal history of the intra-cluster medium out to the highest redshift reached so far.

[1]  M. Markevitch,et al.  SUBMITTED TO APJ Preprint typeset using L ATEX style emulateapj v. 04/03/99 MERGER SHOCKS IN GALAXY CLUSTERS A665 AND A2163 AND THEIR RELATION TO RADIO HALOS , 2001 .

[2]  N. Menci,et al.  Hot gas in clusters of galaxies: the punctuated equilibria model , 1998 .

[3]  S. Allen,et al.  Chandra measurements of the distribution of mass in the luminous lensing cluster Abell 2390 , 2000, astro-ph/0008517.

[4]  A. Evrard,et al.  The baryon content of galaxy clusters: a challenge to cosmological orthodoxy , 1993, Nature.

[5]  ASCA observations of groups at radii of low overdensity: Implications for the cosmic preheating , 2002, astro-ph/0206362.

[6]  H. Ebeling,et al.  RX J1716.6+6708: A Young Cluster at z = 0.81 , 1999, astro-ph/9902277.

[7]  August E. Evrard,et al.  Effects of preheating on X-ray scaling relations in galaxy clusters , 2000 .

[8]  Carlos E. C. J. Gabriel,et al.  Astronomical Data Analysis Software and Systems Xv , 2022 .

[9]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[10]  Institute for Astronomy,et al.  Chandra X-Ray Analysis of the Massive High-Redshift Galaxy Clusters Cl J1113.1–2615 and Cl J0152.7–1357 , 2003, astro-ph/0301218.

[11]  A. Hornstrup,et al.  A Catalog of 203 Galaxy Clusters Serendipitously Detected in the ROSAT PSPC Pointed Observations , 1998, astro-ph/9803099.

[12]  J. Peacock,et al.  Simulations of galaxy formation in a cosmological volume , 2000, astro-ph/0010587.

[13]  Nick Kaiser,et al.  Evolution and clustering of rich clusters , 1986 .

[14]  J. Henry,et al.  The X-ray structure of the 3C 295 cluster - A cooling flow at a redshift of 0.5 , 1986 .

[15]  Chandra observations of RX J1347.5−1145: the distribution of mass in the most X-ray-luminous galaxy cluster known , 2001, astro-ph/0111368.

[16]  U. Helsinki,et al.  X-Ray Total Mass Estimate for the Nearby Relaxed Cluster A3571 , 2000, astro-ph/0001162.

[17]  F. Pearce,et al.  The effect of cooling and preheating on the X-ray properties of clusters of galaxies , 2002, astro-ph/0205137.

[18]  R. Della Ceca,et al.  The ROSAT Deep Cluster Survey: The X-Ray Luminosity Function out to z = 0.8 , 1997, astro-ph/9710308.

[19]  A. Edge,et al.  EXOSAT observations of clusters of galaxies. I - The X-ray data. II - X-ray to optical correlations , 1991 .

[20]  Physical Implications of the X-ray Properties of Galaxy Groups and Clusters , 2001, astro-ph/0109329.

[21]  S. Ettori,et al.  Constraining the cosmological parameters with the gas mass fraction in local and $\mathsf{{\vec z}>0.7}$ galaxy clusters , 2003 .

[22]  R. Schild,et al.  The Einstein Observatory Extended Medium-Sensitivity Survey. I - X-ray data and analysis , 1990 .

[23]  A. Finoguenov,et al.  Details of the mass-temperature relation for clusters of galaxies , 2001 .

[24]  The Birmingham-CfA cluster scaling project - III. Entropy and similarity in galaxy systems , 2003, astro-ph/0304048.

[25]  John A. Nousek,et al.  Chi-squared and C statistic minimization for low count per bin data. [Sampling in X ray astronomy] , 1989 .

[26]  H. Böhringer,et al.  The Mass Function of an X-Ray Flux-limited Sample of Galaxy Clusters , 1999, astro-ph/0111285.

[27]  The effect of non-gravitational gas heating in groups and clusters of galaxies , 2002, astro-ph/0205471.

[28]  F. Brighenti,et al.  Entropy Evolution in Galaxy Groups and Clusters: a Comparison of External and Internal Heating , 2001, astro-ph/0101517.

[29]  J. Navarro,et al.  35 9 v 1 2 2 O ct 1 99 8 The Imprint of Galaxy Formation on X-ray Clusters , 2008 .

[30]  N. Kaiser Evolution of Clusters of Galaxies , 1991 .

[31]  G. W. Pratt,et al.  The mass profile of A1413 observed with XMM-Newton: Implications for the M-T relation , 2002, astro-ph/0207315.

[32]  ROSAT PSPC observations of 36 high‐luminosity clusters of galaxies: constraints on the gas fraction , 1999, astro-ph/9901304.

[33]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[34]  A. Evrard,et al.  Expectations for X-ray cluster observations by the Rosat satellite , 1991 .

[35]  R. Mushotzky X-ray emission from clusters of galaxies , 1984 .

[36]  F. Pearce,et al.  A simulated τCDM cosmology cluster catalogue: the NFW profile and the temperature-mass scaling relations , 2000, astro-ph/0007348.

[37]  Gus Evrard,et al.  Properties of the Intracluster Medium in an Ensemble of Nearby Galaxy Clusters , 1999, astro-ph/9901281.

[38]  M. Markevitch,et al.  Evolution of the Cluster X-Ray Scaling Relations since z > 0.4 , 2002, astro-ph/0207445.

[39]  August E. Evrard,et al.  Mass estimates of X-ray clusters , 1996 .

[40]  S. Borgani,et al.  THE EVOLUTION OF X-RAY CLUSTERS OF GALAXIES , 2002, astro-ph/0209035.

[41]  W. Forman,et al.  A catalog of intracluster gas temperatures , 1993 .

[42]  A. Edge,et al.  Cooling flows and the X-ray luminosity–temperature relation for clusters , 1994 .

[43]  The Evolution of X-Ray Clusters and the Entropy of the Intracluster Medium , 2000, astro-ph/0003289.

[44]  The impact of galaxy formation on X-ray groups , 2002, astro-ph/0210560.

[45]  M. Markevitch,et al.  Chandra Estimate of the Magnetic Field Strength near the Cold Front in A3667 , 2000, astro-ph/0008499.

[46]  Chris Biemesderfer,et al.  Astronomical Data Analysis Software and Systems X , 2001 .

[47]  The nature of dark matter in elliptical galaxies: Chandra observations of NGC 4636 , 2002, astro-ph/0205359.

[48]  M. Malkan,et al.  The WARPS Survey. VI. Galaxy Cluster and Source Identifications from Phase I , 2001, astro-ph/0112190.

[49]  Ulrich G. Briel,et al.  Overview of the ROSAT North Ecliptic Pole Survey , 2001 .

[50]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[51]  The Cluster Mgas-TX Relation: Evidence for a High Level of Preheating , 2002, astro-ph/0203189.

[52]  Monique Arnaud,et al.  The LX—T relation and intracluster gas fractions of X-ray clusters , 1999 .

[53]  J. Dickey,et al.  H I in the Galaxy , 1990 .

[54]  M. Donahue,et al.  Chandra X-Ray Observatory Observation of the High-Redshift Cluster MS 1054–0321 , 2001, astro-ph/0107314.

[55]  A. Hornstrup,et al.  The 160 Square Degree ROSAT Survey: The Revised Catalog of 201 Clusters with Spectroscopic Redshifts , 2003, astro-ph/0305228.

[56]  R. Mushotzky,et al.  The Luminosity-Temperature Relation at z = 0.4 for Clusters of Galaxies , 1997, astro-ph/9703039.

[57]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[58]  Martin C. Weisskopf,et al.  Chandra X-ray Observatory (CXO): overview , 1999, Astronomical Telescopes and Instrumentation.

[59]  V. Springel,et al.  Cooling and heating the intracluster medium in hydrodynamical simulations , 2003 .

[60]  W. Forman,et al.  Chandra X-ray observations of the 3C 295 cluster core , 2001, astro-ph/0101162.

[61]  S. Allen,et al.  The X‐ray virial relations for relaxed lensing clusters observed with Chandra , 2001, astro-ph/0110610.

[62]  The Evolution of the Galaxy Cluster Luminosity-Temperature Relation , 2002, astro-ph/0208468.

[63]  Four Measures of the Intracluster Medium Temperature and Their Relation to a Cluster’s Dynamical State , 2000, astro-ph/0004309.

[64]  Sandeep K. Patel,et al.  The Mass, Baryonic Fraction, and X-Ray Temperature of the Luminous, High-Redshift Cluster of Galaxies MS 0451.6–0305 , 2003, astro-ph/0308024.

[65]  R. Della Ceca,et al.  Measuring Ωm with the ROSAT Deep Cluster Survey , 2001, astro-ph/0106428.

[66]  Temperature Profiles of Nearby Clusters of Galaxies , 2002 .

[67]  P. Rosati,et al.  Moderate-Temperature Clusters of Galaxies from the RDCS and the High-Redshift Luminosity-Temperature Relation* , 2002, astro-ph/0203474.

[68]  S. Allen,et al.  The impact of cooling flows on the TX–LBol relation for the most luminous clusters , 1998, astro-ph/9802218.

[69]  G. Bryan,et al.  Modified Entropy Models for the Intracluster Medium , 2002, astro-ph/0205240.

[70]  Cambridge,et al.  1WGAJ1226.9+3332: a high redshift cluster discovered by Chandra , 2001 .

[71]  Daan Lenstra,et al.  Proceedings in SPIE , 2000 .

[72]  S. Ettori β-model and cooling flows in X-ray clusters of galaxies , 2000, astro-ph/0005224.

[73]  M. Malkan,et al.  The WARPS survey - IV. The X-ray luminosity-temperature relation of high-redshift galaxy clusters , 2000, astro-ph/0003324.

[74]  Maxim Markevitch,et al.  The LX-T Relation and Temperature Function for Nearby Clusters Revisited , 1998, astro-ph/9802059.

[75]  Gravitating mass profiles of nearby galaxy clusters and relations with X-ray gas temperature, luminosity and mass , 2002, astro-ph/0206120.

[76]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[77]  S. Borgani,et al.  Iron Abundance in the Intracluster Medium at High Redshift , 2003, astro-ph/0305223.

[78]  S. Borgani,et al.  The Intracluster Medium in z > 1 Galaxy Clusters , 2000, astro-ph/0012250.