The orienteering problem: A survey

During the last decade, a number of challenging applications in logistics, tourism and other fields were modelled as orienteering problems (OP). In the orienteering problem, a set of vertices is given, each with a score. The goal is to determine a path, limited in length, that visits some vertices and maximises the sum of the collected scores. In this paper, the literature about the orienteering problem and its applications is reviewed. The OP is formally described and many relevant variants are presented. All published exact solution approaches and (meta) heuristics are discussed and compared. Interesting open research questions concerning the OP conclude this paper.

[1]  G. Laporte,et al.  A Branch-and-Cut Algorithm for the Undirected Selective Traveling Salesman Problem , 1998 .

[2]  Xia Wang,et al.  Using a Genetic Algorithm to Solve the Generalized Orienteering Problem , 2008 .

[3]  G. V. Berghe,et al.  Metaheuristics for Tourist Trip Planning , 2009 .

[4]  Bruce L. Golden,et al.  Algorithms and solutions to multi-level vehicle routing problems , 1993 .

[5]  Gilbert Laporte,et al.  The selective travelling salesman problem , 1990, Discret. Appl. Math..

[6]  Ram Ramesh,et al.  An efficient four-phase heuristic for the generalized orienteering problem , 1991, Comput. Oper. Res..

[7]  Matteo Fischetti,et al.  Solving the Orienteering Problem through Branch-and-Cut , 1998, INFORMS J. Comput..

[8]  Bruce L. Golden,et al.  A fast and effective heuristic for the orienteering problem , 1996 .

[9]  Dirk Van Oudheusden,et al.  A Path Relinking approach for the Team Orienteering Problem , 2010, Comput. Oper. Res..

[10]  Zuren Feng,et al.  Ants can solve the team orienteering problem , 2008, Comput. Ind. Eng..

[11]  M. Rosenwein,et al.  Strong linear programming relaxations for the orienteering problem , 1994 .

[12]  Michel Gendreau,et al.  The Profitable Arc Tour Problem: Solution with a Branch-and-Price Algorithm , 2005, Transp. Sci..

[13]  Giri Narasimhan,et al.  Resource-constrained geometric network optimization , 1998, SCG '98.

[14]  Giovanni Righini,et al.  Decremental state space relaxation strategies and initialization heuristics for solving the Orienteering Problem with Time Windows with dynamic programming , 2009, Comput. Oper. Res..

[15]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[16]  M. G. Kantor,et al.  The Orienteering Problem with Time Windows , 1992 .

[17]  R. A. Zemlin,et al.  Integer Programming Formulation of Traveling Salesman Problems , 1960, JACM.

[18]  Dirk Van Oudheusden,et al.  A Detailed Analysis of Two Metaheuristics for the Team Orienteering Problem , 2009 .

[19]  Matthew L. Ginsberg,et al.  Limited Discrepancy Search , 1995, IJCAI.

[20]  Roberto Montemanni,et al.  An ant colony system for team orienteering problems with time windows , 2023, 2305.07305.

[21]  S. Morito,et al.  AN ALGORITHM FOR SINGLE CONSTRAINT MAXIMUM COLLECTION PROBLEM , 1988 .

[22]  Elena Fernández,et al.  Solving the Prize-collecting Rural Postman Problem , 2009, Eur. J. Oper. Res..

[23]  T. Tsiligirides,et al.  Heuristic Methods Applied to Orienteering , 1984 .

[24]  Alain Hertz,et al.  The undirected capacitated arc routing problem with profits , 2010, Comput. Oper. Res..

[25]  Dirk Van Oudheusden,et al.  A guided local search metaheuristic for the team orienteering problem , 2009, Eur. J. Oper. Res..

[26]  R. Vohra,et al.  The Orienteering Problem , 1987 .

[27]  Dirk Van Oudheusden,et al.  The Mobile Tourist Guide: An OR Opportunity , 2007, OR Insight.

[28]  Mitsuo Gen,et al.  Intelligent Engineering Systems through Artificial Neural Networks , 2009 .

[29]  Michel Gendreau,et al.  A branch-and-cut algorithm for the undirected selective traveling salesman problem , 1998, Networks.

[30]  Luc Muyldermans,et al.  Exploring Variants of 2-Opt and 3-Opt for the General Routing Problem , 2005, Oper. Res..

[31]  M. F. Tasgetiren,et al.  A Genetic Algorithm with an Adaptive Penalty Function for the Orienteering Problem , 2005 .

[32]  Bruce L. Golden,et al.  The team orienteering problem , 1996 .

[33]  Michel Gendreau,et al.  Traveling Salesman Problems with Profits , 2005, Transp. Sci..

[34]  Richard F. Hartl,et al.  Heuristics for the multi-period orienteering problem with multiple time windows , 2010, Comput. Oper. Res..

[35]  Marius M. Solomon,et al.  Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints , 1987, Oper. Res..

[36]  Shen Lin Computer solutions of the traveling salesman problem , 1965 .

[37]  Dirk Van Oudheusden,et al.  A PERSONALIZED TOURIST TRIP DESIGN ALGORITHM FOR MOBILE TOURIST GUIDES , 2008, Appl. Artif. Intell..

[38]  Kenneth Sörensen,et al.  Metaheuristics in the service industry , 2009 .

[39]  Alain Hertz,et al.  The capacitated team orienteering and profitable tour problems , 2007, J. Oper. Res. Soc..

[40]  Inmaculada Rodríguez Martín,et al.  Locating a cycle in a transportation or a telecommunications network , 2007, Networks.

[41]  Mark S. Daskin,et al.  The orienteering problem with stochastic profits , 2008 .

[42]  Michel Gendreau,et al.  An exact epsilon-constraint method for bi-objective combinatorial optimization problems: Application to the Traveling Salesman Problem with Profits , 2009, Eur. J. Oper. Res..

[43]  Mark H. Karwan,et al.  An Optimal Algorithm for the Orienteering Tour Problem , 1992, INFORMS J. Comput..

[44]  Tom M. Cavalier,et al.  A heuristic for the multiple tour maximum collection problem , 1994, Comput. Oper. Res..

[45]  Dirk Van Oudheusden,et al.  Iterated local search for the team orienteering problem with time windows , 2009, Comput. Oper. Res..

[46]  Michel Gendreau,et al.  A tabu search heuristic for the undirected selective travelling salesman problem , 1998, Eur. J. Oper. Res..

[47]  Anthony Wren,et al.  Computer Scheduling of Vehicles from One or More Depots to a Number of Delivery Points , 1972 .

[48]  B. Golden,et al.  A multifaceted heuristic for the orienteering problem , 1988 .

[49]  C. Keller Algorithms to solve the orienteering problem: A comparison , 1989 .

[50]  Reuven Bar-Yehuda,et al.  On approximating a geometric prize-collecting traveling salesman problem with time windows , 2005, J. Algorithms.

[51]  Joseph F. Pekny,et al.  An exact parallel algorithm for the resource constrained traveling salesman problem with application to scheduling with an aggregate deadline , 1990, CSC '90.

[52]  Richard F. Hartl,et al.  Metaheuristics for the bi-objective orienteering problem , 2009, Swarm Intelligence.

[53]  Giovanni Righini,et al.  New dynamic programming algorithms for the resource constrained elementary shortest path problem , 2008 .

[54]  Gilbert Laporte,et al.  Efficient heuristics for the design of ring networks , 1995, Telecommun. Syst..

[55]  Steven E. Butt,et al.  An optimal solution procedure for the multiple tour maximum collection problem using column generation , 1999, Comput. Oper. Res..

[56]  Giovanni Righini,et al.  Dynamic programming for the orienteering problem with time windows , 2006 .

[57]  Andrzej Lingas,et al.  Approximation algorithms for time-dependent orienteering , 2001, Inf. Process. Lett..

[58]  Alain Hertz,et al.  Metaheuristics for the team orienteering problem , 2005, J. Heuristics.

[59]  Michel Gendreau,et al.  A tabu search heuristic for periodic and multi-depot vehicle routing problems , 1997, Networks.

[60]  Renata Mansini,et al.  A Granular Variable Neighborhood Search Heuristic for the Tour Orienteering Problem with Time Windows , 2006 .

[61]  Giovanni Righini,et al.  New dynamic programming algorithms for the resource constrained elementary shortest path problem , 2008, Networks.

[62]  Elise Miller-Hooks,et al.  A TABU search heuristic for the team orienteering problem , 2005, Comput. Oper. Res..

[63]  G. Laporte,et al.  A tabu search heuristic for periodic and multi-depot vehicle routing problems , 1997, Networks.

[64]  S. Kulturel-Konak,et al.  Meta heuristics for the orienteering problem , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[65]  Qiwen Wang,et al.  Using artificial neural networks to solve the orienteering problem , 1995, Ann. Oper. Res..

[66]  Inmaculada Rodríguez Martín,et al.  Locating a cycle in a transportation or a telecommunications network , 2007 .

[67]  Zong Woo Geem,et al.  Harmony Search for Generalized Orienteering Problem: Best Touring in China , 2005, ICNC.

[68]  Pieter Vansteenwegen,et al.  Planning in tourism and public transportation , 2009, 4OR.

[69]  Michel Gendreau,et al.  An exact algorithm for team orienteering problems , 2007, 4OR.