A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic Decomposition for Quantifier Elimination

Recently quantifier elimination (QE) has been of great interest in many fields of science and engineering. In this paper an effective symbolic-numeric cylindrical algebraic decomposition (SNCAD) algorithm and its variant specially designed for QE are proposed based on the authors’ previous work and our implementation of those is reported. Based on analysing experimental performances, we are improving our design/synthesis of the SNCAD for its practical realization with existing efficient computational techniques and several newly introduced ones. The practicality of the SNCAD is now examined by experimentation on real computer, which also reveals the quality of the implementation.

[1]  Hirokazu Anai,et al.  The Maple package SyNRAC and its application to robust control design , 2007, Future Gener. Comput. Syst..

[2]  Thomas Sturm,et al.  Rounding and Blending of Solids by a Real Elimination Method , 1997 .

[3]  Thomas Sturm,et al.  Real Quantifier Elimination in Practice , 1997, Algorithmic Algebra and Number Theory.

[4]  H. Hong An efficient method for analyzing the topology of plane real algebraic curves , 1996 .

[5]  George E. Collins,et al.  Partial Cylindrical Algebraic Decomposition for Quantifier Elimination , 1991, J. Symb. Comput..

[6]  Hirokazu Anai,et al.  Development of SyNRAC-Formula Description and New Functions , 2004, International Conference on Computational Science.

[7]  Ramon E. Moore A Test for Existence of Solutions to Nonlinear Systems , 1977 .

[8]  Fabrice Rouillier,et al.  Classification of the perspective-three-point problem, discriminant variety and real solving polynomial systems of inequalities , 2008, ISSAC '08.

[9]  Stefan Ratschan,et al.  Approximate Quantified Constraint Solving by Cylindrical Box Decomposition , 2002, Reliab. Comput..

[10]  Siegfried M. Rump 10. Computer-Assisted Proofs and Self-Validating Methods , 2005, Accuracy and Reliability in Scientific Computing.

[11]  Andreas Seidl,et al.  Efficient projection orders for CAD , 2004, ISSAC '04.

[12]  Dominique Duval,et al.  Algebraic Numbers: An Example of Dynamic Evaluation , 1994, J. Symb. Comput..

[13]  B. F. Caviness,et al.  Quantifier Elimination and Cylindrical Algebraic Decomposition , 2004, Texts and Monographs in Symbolic Computation.

[14]  Rudolf Krawczyk,et al.  Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken , 1969, Computing.

[15]  Siegfried M. Rump,et al.  Algebraic Computation, Numerical Computation and Verified Inclusions , 1988, Trends in Computer Algebra.

[16]  Christopher W. Brown Improved Projection for Cylindrical Algebraic Decomposition , 2001, J. Symb. Comput..

[17]  Volker Weispfenning,et al.  Simulation and Optimization by Quantifier Elimination , 1997, J. Symb. Comput..

[18]  Adam W. Strzebonski,et al.  Cylindrical Algebraic Decomposition using validated numerics , 2006, J. Symb. Comput..

[19]  Hirokazu Anai,et al.  Cylindrical Algebraic Decomposition via Numerical Computation with Validated Symbolic Reconstruction , 2005, Algorithmic Algebra and Logic.

[20]  Pablo A. Parrilo,et al.  Semidefinite Programming Relaxations and Algebraic Optimization in Control , 2003, Eur. J. Control.

[21]  Ramon E. Moore,et al.  SAFE STARTING REGIONS FOR ITERATIVE METHODS , 1977 .

[22]  Rüdiger Loos,et al.  Applying Linear Quantifier Elimination , 1993, Comput. J..

[23]  Pablo A. Parrilo,et al.  Convex Quantifier Elimination for Semidefinite Programming , 2003 .

[24]  S. Hara,et al.  Fixed-structure robust controller synthesis based on sign definite condition by a special quantifier elimination , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[25]  Volker Weispfenning,et al.  Quantifier Elimination for Real Algebra — the Quadratic Case and Beyond , 1997, Applicable Algebra in Engineering, Communication and Computing.

[26]  H. Yanami,et al.  Fixed-structure robust controller synthesis based on symbolic-numeric computation: design algorithms with a CACSD toolbox , 2004, Proceedings of the 2004 IEEE International Conference on Control Applications, 2004..

[27]  Christopher W. Brown QEPCAD B: a program for computing with semi-algebraic sets using CADs , 2003, SIGS.

[28]  L. González-Vega A Combinatorial Algorithm Solving Some Quantifier Elimination Problems , 1998 .

[29]  Volker Weispfenning,et al.  The Complexity of Linear Problems in Fields , 1988, Journal of symbolic computation.

[30]  Christopher W. Brown,et al.  Solution formula construction for truth invariant cad's , 1999 .

[31]  Adam W. Strzebonski A Real Polynomial Decision Algorithm Using Arbitrary-Precision Floating Point Arithmetic , 1999, Reliab. Comput..

[32]  Hoon Hong,et al.  Quantifier elimination for formulas constrained by quadratic equations , 1993, ISSAC '93.

[33]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[34]  George E. Collins,et al.  Interval Arithmetic in Cylindrical Algebraic Decomposition , 2002, J. Symb. Comput..

[35]  Laureano González-Vega,et al.  Applying Quantifier Elimination to the Birkhoff Interpolation Problem , 1996, J. Symb. Comput..

[36]  Dominique Duval,et al.  About a New Method for Computing in Algebraic Number Fields , 1985, European Conference on Computer Algebra.

[37]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition--preliminary report , 1974, SIGS.