New constraints on dark energy from the observed growth of the most X-ray luminous galaxy clusters

We present constraints on the mean matter density, {Omega}{sub m}, normalization of the density fluctuation power spectrum, {sigma}{sub 8}, and dark energy equation of state parameter, w, obtained from the X-ray luminosity function of the Massive Cluster Survey (MACS) in combination with the local BCS and REFLEX galaxy cluster samples. Our analysis incorporates the mass function predictions of Jenkins et al. (2001), a mass-luminosity relation calibrated using the data of Reiprich and Bohringer (2002), and standard priors on the Hubble constant, H{sub 0}, and mean baryon density, {Omega}{sub b} h{sup 2}. We find {Omega}{sub m}=0.27 {sup +0.06} {sub -0.05} and {sigma}{sub 8}=0.77 {sup +0.07} {sub -0.06} for a spatially flat, cosmological constant model, and {Omega}{sub m}=0.28 {sup +0.08} {sub -0.06}, {sigma}{sub 8}=0.75 {+-} 0.08 and w=-0.97 {sup +0.20} {sub -0.19} for a flat, constant-w model. Our findings constitute the first precise determination of the dark energy equation of state from measurements of the growth of cosmic structure in galaxy clusters. The consistency of our result with w=-1 lends strong additional support to the cosmological constant model. The constraints are insensitive to uncertainties at the 10-20 percent level in the mass function and in the redshift evolution o the mass-luminosity relation; the constraint on dark energy is additionally robust against our choice of priors and known X-ray observational biases affecting the mass-luminosity relation. Our results compare favorably with those from recent analyses of type Ia supernovae, cosmic microwave background anisotropies, the X-ray gas mass fraction of relaxed galaxy clusters and cosmic shear. A simplified combination of the luminosity function data with supernova, cosmic microwave background and cluster gas fraction data using importance sampling yields the improved constraints {Omega}{sub m}=0.263 {+-} 0.014, {sigma}{sub 8}=0.79 {+-} 0.02 and w=-1.00 +- 0.05.

[1]  IoA,et al.  Improved constraints on dark energy from Chandra X-ray observations of the largest relaxed galaxy clusters , 2007, 0706.0033.

[2]  Measuring omega(0) using cluster evolution , 1998, astro-ph/9802350.

[3]  R. Nichol,et al.  Cosmological constraints from the SDSS luminous red galaxies , 2006, astro-ph/0608632.

[4]  H. Hoekstra,et al.  Very weak lensing in the CFHTLS Wide: Cosmology from cosmic shear in the linear regime , 2007, 0712.0884.

[5]  S. Cole,et al.  Measuring Ω0 using cluster evolution , 1998 .

[6]  Stefano Casertano,et al.  New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy , 2006, astro-ph/0611572.

[7]  The REFLEX galaxy cluster survey - VII. Omega(m) and sigma(8) from cluster abundance and large-scale clustering , 2002, astro-ph/0208251.

[8]  Supersonic motions of galaxies in clusters , 2005 .

[9]  Matthew A. Bershady,et al.  Linear Regression for Astronomical Data with Measurement Errors and Intrinsic Scatter , 1996, astro-ph/9605002.

[10]  Vikhlinin Kravtsov A New Robust Low-scatter X-ray Mass Indicator for Clusters of Galaxies , 2006 .

[11]  KIPACStanford,et al.  The dark matter haloes of massive, relaxed galaxy clusters observed with Chandra , 2006, astro-ph/0610038.

[12]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[13]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[14]  L. Moscardini,et al.  X‐ray and Sunyaev–Zel'dovich scaling relations in galaxy clusters , 2007, 0704.2678.

[15]  H. M. P. Couchman,et al.  Galaxy Clusters in Hubble Volume Simulations: Cosmological Constraints from Sky Survey Populations , 2001, astro-ph/0110246.

[16]  H. Böhringer,et al.  The Mass Function of an X-Ray Flux-limited Sample of Galaxy Clusters , 1999, astro-ph/0111285.

[17]  Yannick Mellier,et al.  Cosmological constraints from the 100-deg2 weak-lensing survey , 2007 .

[18]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[19]  J. P. Huchra,et al.  The Northern ROSAT All-Sky (NORAS) Galaxy Cluster Survey. I. X-Ray Properties of Clusters Detected as Extended X-Ray Sources , 2000, astro-ph/0003219.

[20]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[21]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[22]  The observed concentration–mass relation for galaxy clusters , 2007, astro-ph/0703126.

[23]  J. Weller,et al.  Large‐scale cosmic microwave background anisotropies and dark energy , 2003, astro-ph/0307104.

[24]  Wayne Hu,et al.  Sample Variance Considerations for Cluster Surveys , 2002 .

[25]  Cosmological Constraints from the Evolution of the Cluster Baryon Mass Function , 2002, astro-ph/0212075.

[26]  C. Baugh,et al.  Galaxy groups in the 2dfgrs: the number density of groups , 2005 .

[27]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[28]  Cluster mass functions in the quintessential universe , 2003, astro-ph/0309485.

[29]  Ebeling,et al.  Detecting structure in two dimensions combining Voronoi tessellation and percolation. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[31]  Constraining the Matter Power Spectrum Normalization Using the Sloan Digital Sky Survey/ROSAT All-Sky Survey and REFLEX Cluster Surveys , 2001, astro-ph/0111394.

[32]  J. P. Huchra,et al.  The ROSAT Brightest Cluster Sample - IV. The extended sample , 2000 .

[33]  Halo Properties in Models with Dynamical Dark Energy , 2003, astro-ph/0303304.

[34]  Subhabrata Majumdar,et al.  Self-Calibration in Cluster Studies of Dark Energy: Combining the Cluster Redshift Distribution, the Power Spectrum, and Mass Measurements , 2003, astro-ph/0305341.

[35]  N. B. Suntzeff,et al.  Observational Constraints on the Nature of Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey , 2007, astro-ph/0701041.

[36]  N. Suzuki,et al.  The Cosmological Baryon Density from the Deuterium-to-Hydrogen Ratio in QSO Absorption Systems: D/H toward Q1243+3047 , 2003, astro-ph/0302006.

[37]  J. P. Huchra,et al.  The ROSAT Brightest Cluster Sample — I. The compilation of the sample and the cluster log N—log S distribution , 1998, astro-ph/9812394.

[38]  Steven W. Allen,et al.  Constraining dark energy with X‐ray galaxy clusters, supernovae and the cosmic microwave background , 2004, astro-ph/0409574.

[39]  J. Bullock,et al.  Dark energy and dark matter haloes , 2005 .

[40]  L. Moscardini,et al.  Systematics in the X-ray cluster mass estimators , 2006, astro-ph/0602434.

[41]  X-Ray Temperatures for the Extended Medium-Sensitivity Survey High-Redshift Cluster Sample: Constraints on Cosmology and the Dark Energy Equation of State , 2004, astro-ph/0404142.

[42]  J. Mohr,et al.  Constraints on Cosmological Parameters from Future Galaxy Cluster Surveys , 2000, astro-ph/0002336.

[43]  N. B. Suntzeff,et al.  The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry , 2007, astro-ph/0701043.

[44]  Y. Mellier,et al.  COSMOS: Three-dimensional Weak Lensing and the Growth of Structure , 2007, astro-ph/0701480.

[45]  A. Edge,et al.  MACS: A Quest for the Most Massive Galaxy Clusters in the Universe , 2000, astro-ph/0009101.

[46]  Ωm from the Temperature-Redshift Distribution of EMSS Clusters of Galaxies , 1999, astro-ph/9907333.

[47]  Rüdiger Kneissl,et al.  Constraining dark energy with Sunyaev-Zel'dovich cluster surveys. , 2002, Physical review letters.

[48]  A complete sample of 12 very x-ray luminous galaxy clusters at z >0.5 , 2007, astro-ph/0703394.

[49]  Constraining Amplitude and Slope of the Mass Fluctuation Spectrum Using a Cluster Baryon Mass Function , 2003, astro-ph/0305549.

[50]  H. Dahle ApJ in press Preprint typeset using L ATEX style emulateapj v. 6/22/04 THE CLUSTER MASS FUNCTION FROM WEAK GRAVITATIONAL LENSING 1 , 2006 .

[51]  G. Hasinger,et al.  Luminosity-dependent evolution of soft X-ray selected AGN : New Chandra and XMM-Newton surveys , 2005, astro-ph/0506118.

[52]  Cosmological constraints from the local X-ray luminosity function of the most X-ray-luminous galaxy clusters , 2002, astro-ph/0208394.

[53]  S. Borgani,et al.  On determining the cluster abundance normalization , 2003 .

[54]  The ROSAT-ESO Flux-Limited X-Ray (REFLEX) Galaxy Cluster Survey III: The Power Spectrum , 2000, astro-ph/0012105.

[55]  Y. Ikebe,et al.  Statistics of X-ray observables for the cooling-core and non-cooling core galaxy clusters , 2007 .

[56]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[57]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[58]  H. Hoekstra,et al.  Evidence for non-hydrostatic gas from the cluster X-ray to lensing mass ratio , 2007, 0710.4132.

[59]  Andrew J. Connolly,et al.  Measuring the Matter Density Using Baryon Oscillations in the SDSS , 2006, astro-ph/0608635.

[60]  Adam G. Riess,et al.  Improved Distances to Type Ia Supernovae with Multicolor Light-Curve Shapes: MLCS2k2 , 2006 .

[61]  Eric V. Linder,et al.  Cosmic structure and dark energy , 2003 .

[62]  W. M. Wood-Vasey,et al.  Scrutinizing Exotic Cosmological Models Using ESSENCE Supernova Data Combined with Other Cosmological Probes , 2007, astro-ph/0701510.

[63]  A kinematical approach to dark energy studies , 2006, astro-ph/0605683.

[64]  M. White The Mass Function , 2002, astro-ph/0207185.

[65]  J. Trümper ROSAT--A New Look at the X-ray Sky. , 1993, Science.

[66]  Cluster number density normalization from the observed mass–temperature relation , 2001, astro-ph/0111362.

[67]  Effects of Mergers and Core Structure on the Bulk Properties of Nearby Galaxy Clusters , 2005, astro-ph/0510064.

[68]  M. White,et al.  Future Galaxy Cluster Surveys: The Effect of Theory Uncertainty on Constraining Cosmological Parameters , 2002, astro-ph/0204273.

[69]  J. Patrick Henry,et al.  Measuring Cosmological Parameters from the Evolution of Cluster X-Ray Temperatures , 2000, astro-ph/0002365.

[70]  R. G. Cruddace,et al.  The ROSAT-ESO flux limited X-ray (REFLEX) galaxy cluster survey. I. The construction of the cluster sample ? , 2001 .

[71]  D. Nagai,et al.  Testing X-Ray Measurements of Galaxy Clusters with Cosmological Simulations , 2006, astro-ph/0609247.

[72]  New Constraints on Dark Energy , 2004, astro-ph/0406652.

[73]  J. P. Huchra,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[74]  Subhabrata Majumdar,et al.  Importance of Cluster Structural Evolution in Using X-Ray and Sunyaev-Zeldovich Effect Galaxy Cluster Surveys to Study Dark Energy , 2002 .

[75]  R. Della Ceca,et al.  Measuring Ωm with the ROSAT Deep Cluster Survey , 2001, astro-ph/0106428.

[76]  L. Guzzo,et al.  The ROSAT-ESO Flux Limited X-ray (REFLEX) Galaxy cluster survey. V. The cluster catalogue , 2004, astro-ph/0405546.

[77]  L. Guzzo,et al.  The ROSAT-ESO Flux-limited X-Ray (REFLEX) Galaxy Cluster Survey. IV. The X-Ray Luminosity Function , 2002 .

[78]  L. Moscardini,et al.  Virial Scaling of Massive Dark Matter Halos: Why Clusters Prefer a High Normalization Cosmology , 2007, astro-ph/0702241.