BCI and motion capture technologies for rehabilitation based on videogames

This paper presents a cost-effective rehabilitation system based on videogames and multimodal recordings of physiological signals. The system targets patients with sensory-motor impairments resulting from lesions of the central nervous system (e.g., due to stroke or traumatic injuries). It relies on a wireless low-cost hybrid interface combining a consumer-level electroencephalographic (EEG) device and the Kinect sensor to record the motion capture information. Thus providing quantitative physiological measures to support medical evaluations and improve the personalization of health service. Furthermore, through the design of specialized videogames for rehabilitation, this approach aim at increasing the patient's motivation, potentially improving the service quality and the recovery process. The system is currently being used in a rehabilitation center in Colombia by patients with upper limb paralysis and balance disorders after stroke or traumaticuries. Initial results show significant improvements in the mobility of affected joints, improved adherence to treatments by patients, and high acceptability by therapists and end-users.

[1]  Silvia Inés,et al.  Cuidados del niño C on parálisis C erebral , 2006 .

[2]  John E. Muñoz-Cardona,et al.  Sistema de Rehabilitación basado en el Uso de Análisis Biomecánico y Videojuegos mediante el Sensor Kinect , 2013 .

[3]  Elliot S. Krames,et al.  What Is Neuromodulation , 2009 .

[4]  Sergi Bermúdez i Badia,et al.  RehabNet: A distributed architecture for motor and cognitive neuro-rehabilitation , 2013, 2013 IEEE 15th International Conference on e-Health Networking, Applications and Services (Healthcom 2013).

[5]  C. Aguirre,et al.  Prevalencia de la esclerosis múltiple en Colombia , 2000 .

[6]  Javier A. Chaparro,et al.  LA INGENIERÍA BIOMÉDICA EN COLOMBIA: UNA PERSPECTIVA DESDE LA FORMACIÓN DEL PREGRADO , 2010 .

[7]  Simon J. Marshall,et al.  A theory-based framework for evaluating exergames as persuasive technology , 2009, Persuasive '09.

[8]  Brendan Z. Allison,et al.  Brain-Computer Interfaces: A Gentle Introduction , 2009 .

[9]  Markus Plank,et al.  Simultaneous Neural and Movement Recording in Large-Scale Immersive Virtual Environments , 2013, IEEE Transactions on Biomedical Circuits and Systems.

[10]  J. Muñoz,et al.  BKI: Brain Kinect Interface, a new hybrid BCI for rehabilitation , 2013, GFHEU.

[11]  Leydi Johana Olaya Valencia,et al.  Plan de Negocios para la creación del centro de rehabiltación Fundación Riveras , 2012 .

[12]  S. Deshpande,et al.  Task Characteristics and the Experience of Optimal Flow in Human—Computer Interaction , 1994 .

[13]  Iván Andrés Isaza Velásquez,et al.  Plan de negocios centro de rehabilitación fisioterapéutico y kinesiológico “Fisiokine Pereira” , 2012 .

[14]  Susana Schkolnik América Latina: la medición de la discapacidad a partir de los censos y fuentes alternativas , 2011 .

[15]  Winnie Jensen,et al.  Introduction to Neural Engineering for Motor Rehabilitation , 2013 .

[16]  R. Bartlett,et al.  Extended Book Review: Introduction to Sports Biomechanics: Analysing Human Movement Patterns, 2nd Edn. , 2008 .

[17]  Margin Martínez Matheus,et al.  La tecnología en rehabilitación: una aproximación conceptual , 2006 .

[18]  Claudia Patricia Henao Lema,et al.  Lesiones medulares y discapacidad: revisión bibliográfica , 2010 .