Cubatures on Grassmannians: Moments, Dimension Reduction, and Related Topics
暂无分享,去创建一个
Anna Breger | Martin Ehler | Thomas Peter | M. Ehler | T. Peter | A. Breger | Manuel Graef | Manuel Graef | Anna Breger
[1] A. G. Constantine,et al. Generalized Jacobi Polynomials as Spherical Functions of the Grassmann Manifold , 1974 .
[2] Massimo Fornasier,et al. Quasi-linear Compressed Sensing , 2013, Multiscale Model. Simul..
[3] Christine Bachoc,et al. Codes and designs in Grassmannian spaces , 2004, Discret. Math..
[4] P. Harpe,et al. Cubature Formulas, Geometrical Designs, Reproducing Kernels, and Markov Operators , 2005, math/0502312.
[5] Isaac Z. Pesenson,et al. Cubature formulas and discrete fourier transform on compact manifolds , 2011, ArXiv.
[6] Yuan Xu,et al. Cubature Formulas on Spheres , 2013 .
[7] Hrushikesh Narhar Mhaskar,et al. A Quadrature Formula for Diffusion Polynomials Corresponding to a Generalized Heat Kernel , 2010 .
[8] Martin Ehler,et al. Phase retrieval using random cubatures and fusion frames of positive semidefinite matrices , 2015, 1505.05003.
[9] L. Demanet,et al. Stable Optimizationless Recovery from Phaseless Linear Measurements , 2012, Journal of Fourier Analysis and Applications.
[10] D. Potts,et al. Parameter estimation for nonincreasing exponential sums by Prony-like methods , 2013 .
[11] Ulrich von der Ohe,et al. A multivariate generalization of Prony's method , 2015, 1506.00450.
[12] H. N. Mhaskar,et al. Eignets for function approximation on manifolds , 2009, ArXiv.
[13] Dustin G. Mixon,et al. Saving phase: Injectivity and stability for phase retrieval , 2013, 1302.4618.
[14] Arnold Neumaier,et al. Discrete measures for spherical designs, eutactic stars and lattices , 1988 .
[15] I. Yaacov. The Vandermonde determinant identity in higher dimension , 2014, 1405.0993.
[16] Christine Bachoc,et al. Designs in Grassmannian Spaces and Lattices , 2002 .
[17] Dan Edidin,et al. Projections and Phase retrieval , 2015, 1506.00674.
[18] G. Plonka,et al. Prony methods for recovery of structured functions , 2014 .
[19] Manuel Gräf,et al. Points on manifolds with asymptotically optimal covering radius , 2016, J. Complex..
[20] Christine Bachoc,et al. Signal Reconstruction From the Magnitude of Subspace Components , 2012, IEEE Transactions on Information Theory.
[21] Gerlind Plonka,et al. A generalized Prony method for reconstruction of sparse sums of eigenfunctions of linear operators , 2013 .
[22] Joaquim Ortega-Cerdà,et al. Asymptotically optimal designs on compact algebraic manifolds , 2016, 1612.06729.
[23] P. Casazza,et al. Phase retrieval and norm retrieval , 2014, 1409.8266.
[24] H. Engels,et al. Numerical Quadrature and Cubature , 1980 .
[25] M. Ehler,et al. Cubatures and designs in unions of Grassmannians , 2014 .
[26] Brian C. Lovell,et al. Kernel analysis on Grassmann manifolds for action recognition , 2013, Pattern Recognit. Lett..
[27] Jonathan D. Hauenstein,et al. Numerically Solving Polynomial Systems with Bertini , 2013, Software, environments, tools.
[28] Hrushikesh Narhar Mhaskar,et al. Diffusion polynomial frames on metric measure spaces , 2008 .
[29] M. Gräf. Efficient Algorithms for the Computation of Optimal Quadrature Points on Riemannian Manifolds , 2013 .
[30] Dimitris Achlioptas,et al. Database-friendly random projections: Johnson-Lindenstrauss with binary coins , 2003, J. Comput. Syst. Sci..
[31] Thierry Blu,et al. Sampling signals with finite rate of innovation , 2002, IEEE Trans. Signal Process..
[32] E. Novak,et al. Tractability of Multivariate Problems , 2008 .
[33] Bernhard G. Bodmann,et al. From Low- to High-Dimensional Moments Without Magic , 2016, 1601.07401.
[34] J. Seidel,et al. Spherical codes and designs , 1977 .
[35] Dan Edidin,et al. An algebraic characterization of injectivity in phase retrieval , 2013, ArXiv.
[36] C. Choirat,et al. Quadrature rules and distribution of points on manifolds , 2010, 1012.5409.
[37] Rama Chellappa,et al. Statistical Computations on Grassmann and Stiefel Manifolds for Image and Video-Based Recognition , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[38] Donald St. P. Richards,et al. Special functions of matrix argument. I. Algebraic induction, zonal polynomials, and hypergeometric functions , 1987 .
[39] Alan Edelman,et al. MOPS: Multivariate orthogonal polynomials (symbolically) , 2004, J. Symb. Comput..
[40] S. G. Hoggar,et al. t-Designs in Projective Spaces , 1982, Eur. J. Comb..
[41] E. Novak,et al. Tractability of Multivariate Problems Volume II: Standard Information for Functionals , 2010 .
[42] W. Marsden. I and J , 2012 .
[43] Anna Breger,et al. Quasi Monte Carlo Integration and Kernel-Based Function Approximation on Grassmannians , 2016, 1605.09165.
[44] Felix Krahmer,et al. A Partial Derandomization of PhaseLift Using Spherical Designs , 2013, Journal of Fourier Analysis and Applications.
[45] Josef Dick,et al. Covering of spheres by spherical caps and worst-case error for equal weight cubature in Sobolev spaces , 2015 .
[46] Emmanuel J. Candès,et al. PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.
[47] Y. Chikuse. Statistics on special manifolds , 2003 .
[48] Christine Bachoc,et al. Tight p-fusion frames , 2012, ArXiv.
[49] J. Matousek,et al. On variants of the Johnson–Lindenstrauss lemma , 2008 .
[50] Daniel Potts,et al. Parameter estimation for exponential sums by approximate Prony method , 2010, Signal Process..
[51] Ian H. Sloan,et al. QMC designs: Optimal order Quasi Monte Carlo integration schemes on the sphere , 2012, Math. Comput..
[52] Sanjoy Dasgupta,et al. An elementary proof of a theorem of Johnson and Lindenstrauss , 2003, Random Struct. Algorithms.
[53] R. Muirhead. Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.
[54] E. Saff,et al. The Covering Radius of Randomly Distributed Points on a Manifold , 2015, 1504.03029.
[55] Gerlind Plonka-Hoch,et al. Sparse Phase Retrieval of One-Dimensional Signals by Prony's Method , 2017, Front. Appl. Math. Stat..
[56] Thomas Kailath,et al. ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..
[57] R. O. Schmidt,et al. Multiple emitter location and signal Parameter estimation , 1986 .
[58] Xiaodong Li,et al. Solving Quadratic Equations via PhaseLift When There Are About as Many Equations as Unknowns , 2012, Found. Comput. Math..
[59] D. Geller,et al. Band-Limited Localized Parseval Frames and Besov Spaces on Compact Homogeneous Manifolds , 2010, 1002.3841.