Asymptotic density, computable traceability, and 1-randomness

Let r be a real number in the unit interval [0, 1]. A set A ⊆ ω is said to be coarsely computable at density r if there is a computable function f such that {n | f(n) = A(n)} has lower density at least r. Our main results are that A is coarsely computable at density 1/2 if A is computably traceable or truth-table reducible to a 1-random set. In the other direction, we show that if a degree a is hyperimmune or PA, then there is an a-computable set which is not coarsely computable at any positive density.

[1]  André Nies,et al.  A Unifying Approach to the Gamma Question , 2015, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science.

[2]  Stuart A. Kurtz,et al.  Notions of Weak Genericity , 1983, J. Symb. Log..

[3]  Denis R. Hirschfeldt,et al.  Algorithmic randomness and complexity. Theory and Applications of Computability , 2012 .

[4]  Paul E. Schupp,et al.  Generic computability, Turing degrees, and asymptotic density , 2010, J. Lond. Math. Soc..

[5]  Paul E. Schupp,et al.  Asymptotic density and computably Enumerable Sets , 2013, J. Math. Log..

[6]  Ilya Kapovich,et al.  Generic-case complexity, decision problems in group theory and random walks , 2002, ArXiv.

[7]  Rodney G. Downey,et al.  Algorithmic Randomness and Complexity , 2010, Theory and Applications of Computability.

[8]  Alexei G. Myasnikov,et al.  Generic complexity of undecidable problems , 2008, J. Symb. Log..

[9]  Paul G. Hoel,et al.  Introduction to Probability Theory , 1972 .

[10]  Rajeev Motwani,et al.  Randomized Algorithms , 1995, SIGA.

[11]  Alexei G. Myasnikov,et al.  Generic complexity of undecidable problems , 2008, Journal of Symbolic Logic.

[12]  Paul E. Schupp,et al.  Asymptotic density and the coarse computability bound , 2015, Comput..

[13]  Donald A. Martin,et al.  The Degrees of Hyperimmune Sets , 1968 .

[14]  Laurent Bienvenu,et al.  From bi-immunity to absolute undecidability , 2013, J. Symb. Log..

[15]  Sebastiaan Terwijn,et al.  Computational randomness and lowness* , 2001, Journal of Symbolic Logic.

[16]  Frank Stephan,et al.  Covering the recursive sets , 2015, Ann. Pure Appl. Log..