Magnetization profiles at the upper critical dimension as solutions of the integer Yamabe problem.

We study the connection between the magnetization profiles of models described by a scalar field with marginal interaction term in a bounded domain and the solutions of the so-called Yamabe problem in the same domain, which amounts to finding a metric having constant curvature. Taking the slab as a reference domain, we first study the magnetization profiles at the upper critical dimensions d=3, 4, 6 for different (scale-invariant) boundary conditions. By studying the saddle-point equations for the magnetization, we find general formulas in terms of Weierstrass elliptic functions, extending exact results known in literature and finding ones for the case of percolation. The zeros and poles of the Weierstrass elliptic solutions can be put in direct connection with the boundary conditions. We then show that, for any dimension d, the magnetization profiles are solution of the corresponding integer Yamabe equation at the same d and with the same boundary conditions. The magnetization profiles in the specific case of the four-dimensional Ising model with fixed boundary conditions are compared with Monte Carlo simulations, finding good agreement. These results explicitly confirm at the upper critical dimension recent results presented in Gori and Trombettoni [J. Stat. Mech: Theory Exp. (2020) 0632101742-546810.1088/1742-5468/ab7f32].

[1]  David P. Landau,et al.  Phase transitions and critical phenomena , 1989, Computing in Science & Engineering.

[2]  D. Bailin Field theory , 1979, Nature.

[3]  J. Cardy Scaling and Renormalization in Statistical Physics by John Cardy , 1996 .

[4]  A. Trombettoni,et al.  Geometry of bounded critical phenomena , 2019, Journal of Statistical Mechanics: Theory and Experiment.

[5]  J. Brankov,et al.  Theory of Critical Phenomena in Finite-Size Systems: Scaling and Quantum Effects , 2000 .

[6]  A. Polyanin,et al.  Handbook of Exact Solutions for Ordinary Differential Equations , 1995 .

[7]  S. Dietrich,et al.  Scaling laws and surface exponents from renormalization group equations , 1980 .

[8]  S. Dietrich,et al.  Monte Carlo simulation results for critical Casimir forces , 2007, 0708.2902.

[9]  A. Bray,et al.  Critical behaviour of semi-infinite systems , 1977 .

[10]  B. Linder Phase Transitions and Critical Phenomena , 2005 .

[11]  A. McKane,et al.  Critical exponents for the percolation problem and the Yang-Lee edge singularity , 1981 .

[12]  Critical Dynamics in Thin Films , 2005, cond-mat/0509770.

[13]  Erik Luijten Interaction Range, Universality and the Upper Critical Dimension , 1997 .

[14]  J. Cardy,et al.  Finite-size dependence of the free energy in two-dimensional critical systems , 1988 .

[15]  S. Chang,et al.  Fractional Laplacian in conformal geometry , 2010, 1003.0398.

[16]  J. Zinn-Justin Quantum Field Theory and Critical Phenomena , 2002 .

[17]  Scattering matrix in conformal geometry , 2001, math/0109089.

[18]  H. Hatipoğlu,et al.  145 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? , 2005 .

[19]  Arkady L.Kholodenko,et al.  From Ginzburg–Landau to Hilbert–Einstein via Yamabe , 2004, gr-qc/0410029.

[20]  Victor Martin-Mayor,et al.  Field Theory, the Renormalization Group and Critical Phenomena , 1984 .

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  丁東鎭 12 , 1993, Algo habla con mi voz.

[23]  J. Qing,et al.  Fractional conformal Laplacians and fractional Yamabe problems , 2010, 1012.0579.

[24]  K. Akutagawa Yamabe metrics of positive scalar curvature and conformally flat manifolds , 1994 .

[25]  M. Mézard,et al.  Journal of Statistical Mechanics: Theory and Experiment , 2011 .

[26]  S. Rychkov EPFL Lectures on Conformal Field Theory in D ≥ 3 Dimensions , 2016, 1601.05000.

[27]  V. Vassilev,et al.  Order parameter profiles in a system with Neumann – Neumann boundary conditions , 2018 .

[28]  G. Mussardo Statistical Field Theory , 2020 .

[29]  A. Gambassi,et al.  Comment on “The Casimir effect for the Bose-gas in slabs” by P. A. Martin and V. A. Zagrebnov. Relation between the thermodynamic Casimir effect in Bose-gas slabs and critical Casimir forces , 2006, cond-mat/0602630.

[30]  J. Cardy Scaling and Renormalization in Statistical Physics , 1996 .

[31]  Giuseppe Mussardo,et al.  Statistical Field Theory: An Introduction to Exactly Solved Models in Statistical Physics , 2009 .