Charming dark matter

[1]  M. Xiao,et al.  Dark Matter Results from 54-Ton-Day Exposure of PandaX-II Experiment. , 2017, Physical review letters.

[2]  E Aprile,et al.  First Dark Matter Search Results from the XENON1T Experiment. , 2017, Physical review letters.

[3]  M. Blanke,et al.  Top-flavoured dark matter in Dark Minimal Flavour Violation , 2017, 1702.08457.

[4]  G. Tetlalmatzi-Xolocotzi,et al.  On the ultimate precision of meson mixing observables , 2016, 1603.07770.

[5]  S. Gottlieb,et al.  Review of lattice results concerning low-energy particle physics , 2016, The European Physical Journal C.

[6]  P. Machado,et al.  Simplified models for dark matter face their consistent completions. , 2016, 1611.04593.

[7]  F. Kahlhoefer,et al.  Studying generalised dark matter interactions with extended halo-independent methods , 2016, 1607.04418.

[8]  Scoap Search for squarks and gluinos in final states with jets and missing transverse momentum at s =13 TeV with the ATLAS detector , 2016 .

[9]  J. G. Gonzalez,et al.  All-flavour search for neutrinos from dark matter annihilations in the Milky Way with IceCube/DeepCore , 2016, 1606.00209.

[10]  C. Englert,et al.  S-channel dark matter simplified models and unitarity , 2016, 1604.07975.

[11]  R. Goldouzian Search for Anomalous Single Top Quark Production in Association with a Photon in pp Collisions at s=8 TeV , 2016 .

[12]  Abulaiti Yiming,et al.  Search for top squark pair production in final states with one isolated lepton, jets, and missing transverse momentum in s=8 TeV pp collisions with the ATLAS detector , 2016 .

[13]  A. Simone,et al.  Simplified models vs. effective field theory approaches in dark matter searches , 2016, 1603.08002.

[14]  Andrew Fowlie,et al.  Superplot: a graphical interface for plotting and analysing MultiNest output , 2016, The European Physical Journal Plus.

[15]  D O Caldwell,et al.  New Results from the Search for Low-Mass Weakly Interacting Massive Particles with the CDMS Low Ionization Threshold Experiment. , 2015, Physical review letters.

[16]  R. Webb,et al.  Improved Limits on Scattering of Weakly Interacting Massive Particles from Reanalysis of 2013 LUX Data. , 2015, Physical review letters.

[17]  M. Aaboud Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at s =13 TeV using the ATLAS detector , 2016 .

[18]  V. Takhistov,et al.  Beyond minimal lepton-flavored Dark Matter , 2015, 1510.04694.

[19]  F. Kahlhoefer,et al.  Implications of unitarity and gauge invariance for simplified dark matter models , 2015, 1510.02110.

[20]  S. Fajfer,et al.  Prospects of discovering new physics in rare charm decays , 2015, 1510.00965.

[21]  M. Razzano,et al.  SEARCH FOR EXTENDED GAMMA-RAY EMISSION FROM THE VIRGO GALAXY CLUSTER WITH FERMI-LAT , 2015, 1510.00004.

[22]  A. Datta,et al.  Quark-flavored scalar dark matter , 2015, 1509.04271.

[23]  A. Drlica-Wagner,et al.  Limits to dark matter properties from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies , 2015, 1508.05827.

[24]  M. D. Mauro,et al.  AMS-02 electrons and positrons: astrophysical interpretation and Dark Matter constraints , 2015, 1507.08680.

[25]  Scoap,et al.  Search for dark matter, extra dimensions, and unparticles in monojet events in proton–proton collisions at s=8 TeV , 2015 .

[26]  J. T. Childers,et al.  Search for Scalar Charm Quark Pair Production in pp Collisions at sqrt[s]=8  TeV with the ATLAS Detector. , 2015, Physical review letters.

[27]  A. Lenz Lifetimes and heavy quark expansion , 2015 .

[28]  A. Ibarra,et al.  Dirac dark matter with a charged mediator: a comprehensive one-loop analysis of the direct detection phenomenology , 2015, 1503.03382.

[29]  R. Nagai,et al.  Effective theories for dark matter nucleon scattering , 2015, 1502.02244.

[30]  Matthew D. Klimek,et al.  Signatures of Top Flavored Dark Matter , 2015, 1501.02202.

[31]  M. Procura,et al.  Connecting dark matter UV complete models to direct detection rates via effective field theory , 2014, 1411.3342.

[32]  A. Simone,et al.  Making the most of the relic density for dark matter searches at the LHC 14 TeV Run , 2014, 1410.7409.

[33]  A. Boveia,et al.  Simplified Models for Dark Matter and Missing Energy Searches at the LHC , 2014, 1409.2893.

[34]  L. Roszkowski,et al.  Dark matter production in the early Universe: beyond the thermal WIMP paradigm , 2014, 1407.0017.

[35]  P. Catastini,et al.  Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using $$ \sqrt{s}=8 $$ TeV proton-proton collision data , 2014, 1405.7875.

[36]  M. Blanke,et al.  Flavored dark matter beyond Minimal Flavor Violation , 2014, 1405.6709.

[37]  R. Frederix,et al.  The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.

[38]  M. Procura,et al.  New constraints on dark matter effective theories from standard model loops. , 2014, Physical review letters.

[39]  A. Merloni,et al.  X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.

[40]  R. Webb,et al.  First results from the LUX dark matter experiment at the Sanford underground research facility. , 2013, Physical review letters.

[41]  Enrico Morgante,et al.  On the validity of the effective field theory for dark matter searches at the LHC part III: analysis for the t-channel , 2013, 1409.6668.

[42]  P. Panci,et al.  Tools for model-independent bounds in direct dark matter searches , 2013, 1307.5955.

[43]  P. Gondolo,et al.  On the sbottom resonance in dark matter scattering , 2013, 1307.4481.

[44]  K. Petraki,et al.  Review of asymmetric dark matter , 2013, 1305.4939.

[45]  A. Lenz,et al.  D-meson lifetimes within the heavy quark expansion , 2013, 1305.3588.

[46]  Jamie Tattersall,et al.  Contact interactions probe effective dark-matter models at the LHC , 2013, 1303.3348.

[47]  Wick Haxton,et al.  The Effective Field Theory of Dark Matter Direct Detection , 2012, 1203.3542.

[48]  M. Bobrowski Short distance D 0 – D 0 mixing , 2013 .

[49]  J. Shigemitsu,et al.  $|V_{cd}|$ from D Meson Leptonic Decays , 2012, 1206.4936.

[50]  C. DeTar,et al.  $B$- and $D$-meson decay constants from three-flavor lattice QCD , 2011, 1112.3051.

[51]  S. Blanchet,et al.  Flavored Dark Matter, and Its Implications for Direct Detection and Colliders , 2011, 1109.3516.

[52]  Jared A. Evans,et al.  Simplified Models for LHC New Physics Searches , 2011, 1105.2838.

[53]  Mario Kadastik,et al.  PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection , 2010, 1012.4515.

[54]  J. Pradler,et al.  Dark matter from minimal flavor violation , 2011, 1105.1781.

[55]  A. Lenz,et al.  Standard Model Predictions for $D^0$-oscillations and CP-violation , 2010, 1011.5608.

[56]  T. Kitching,et al.  The dark matter of gravitational lensing , 2010, 1001.1739.

[57]  P. Schuster,et al.  Simplified models for a first characterization of new physics at the LHC , 2008, 0810.3921.

[58]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[59]  P. Osland,et al.  The Oblique parameters in multi-Higgs-doublet models , 2008, 0802.4353.

[60]  IoA,et al.  Improved constraints on dark energy from Chandra X-ray observations of the largest relaxed galaxy clusters , 2007, 0706.0033.

[61]  T. Feldmann,et al.  Minimal Flavour Violation and Beyond , 2006, hep-ph/0611095.

[62]  J. Hewett,et al.  Implications of D0- ¯D0 Mixing for New Physics , 2007 .

[63]  A. Petrov,et al.  Short-distance analysis of D-0-D-0 mixing , 2005, hep-ph/0506185.

[64]  Edinburgh,et al.  Simulating the joint evolution of quasars, galaxies and their large-scale distribution , 2005, astro-ph/0504097.

[65]  C. Nishi Simple derivation of general Fierz-type identities , 2004, hep-ph/0412245.

[66]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[67]  Y. Grossman,et al.  The D 0 − D 0 mass difference from a dispersion relation , 2004 .

[68]  Y. Grossman,et al.  SU(3) breaking and D0-D0 mixing , 2001, hep-ph/0110317.

[69]  A. Buras,et al.  Universal unitarity triangle and physics beyond the standard model , 2000, hep-ph/0007085.

[70]  I. Bigi,et al.  D^0 - D^0-bar Oscillations as a Probe of Quark-Hadron Duality , 2000, hep-ph/0005089.

[71]  D. Davis,et al.  ROSAT Temperatures and Abundances for a Complete Sample of Elliptical Galaxies , 1996, astro-ph/9607052.

[72]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[73]  Takeuchi,et al.  Estimation of oblique electroweak corrections. , 1992, Physical review. D, Particles and fields.

[74]  Graciela B. Gelmini,et al.  Cosmic abundances of stable particles: Improved analysis , 1991 .

[75]  D. Seckel,et al.  Three exceptions in the calculation of relic abundances. , 1991, Physical review. D, Particles and fields.

[76]  A. Broeils,et al.  Extended rotation curves of spiral galaxies: dark haloes and modified dynamics , 1991 .

[77]  Takeuchi,et al.  New constraint on a strongly interacting Higgs sector. , 1990, Physical review letters.

[78]  S. Glashow,et al.  Weak Interactions with Lepton-Hadron Symmetry , 1970 .

[79]  V. Rubin,et al.  Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions , 1970 .

[80]  F. Zwicky On the Masses of Nebulae and of Clusters of Nebulae , 1937 .