Electrochemical biosensors based on nanofibres for cardiac biomarker detection: A comprehensive review.

The vital importance of early and accurate diagnosis of cardiovascular diseases (CVDs) to prevent the irreversible damage or even death of patients has driven the development of biosensor devices for detection and quantification of cardiac biomarkers. Electrochemical biosensors offer rapid sensing, low cost, portability and ease of use. Over the past few years, nanotechnology has contributed to a tremendous improvement in the sensitivity of biosensors. In this review, the authors summarise the state-of-the-art of the application of one particular type of nanostructured material, i.e. nanofibres, for use in electrochemical biosensors for the ultrasensitive detection of cardiac biomarkers. A new way of classifying the nanofibre-based electrochemical biosensors according to the electrical conductance and the type of nanofibres is presented. Some key data from each article reviewed are highlighted, including the mechanism of detection, experimental conditions and the response range of the biosensor. The primary aim of this review is to emphasise the prospects for nanofibres for the future development of biosensors in diagnosis of CVDs as well as considering how to improve their characteristics for application in medicine.

[1]  Marc P Y Desmulliez,et al.  Lab-on-a-chip based immunosensor principles and technologies for the detection of cardiac biomarkers: a review. , 2011, Lab on a chip.

[2]  You Wang,et al.  Carbon Nanotube-Filled Nanofibrous Membranes Electrospun from Poly(acrylonitrile-co-acrylic acid) for Glucose Biosensor , 2009 .

[3]  J. L. Martín-Ventura,et al.  Biomarcadores en la medicina cardiovascular , 2009 .

[4]  P. Supaphol,et al.  Modification of disposable screen-printed carbon electrode surfaces with conductive electrospun nanofibers for biosensor applications , 2013 .

[5]  T. Pichler,et al.  Functionalization of carbon nanotubes , 2004 .

[6]  Moncy V. Jose,et al.  Electrospun gold nanofiber electrodes for biosensors. , 2011, Biosensors & bioelectronics.

[7]  K. D. de Jong,et al.  Carbon Nanofibers: Catalytic Synthesis and Applications , 2000 .

[8]  Zhi‐Kang Xu,et al.  Nanofibrous Membranes Containing Carbon Nanotubes: Electrospun for Redox Enzyme Immobilization , 2006 .

[9]  Armando C. Duarte,et al.  Advances in point-of-care technologies with biosensors based on carbon nanotubes , 2013 .

[10]  Armando C. Duarte,et al.  Review of analytical figures of merit of sensors and biosensors in clinical applications , 2010 .

[11]  A. M. Shoushtari,et al.  New procedure for preparation of highly stable and well separated carbon nanotubes in an aqueous modified polyacrylonitrile , 2010 .

[12]  Soo Chool Lee,et al.  Fabrication of novel chitosan nanofiber/gold nanoparticles composite towards improved performance for a cholesterol sensor , 2011 .

[13]  Leong L Ng,et al.  Biomarkers in acute myocardial infarction , 2010, BMC medicine.

[14]  B. J. Venton,et al.  Review: Carbon nanotube based electrochemical sensors for biomolecules. , 2010, Analytica chimica acta.

[15]  Bin Ding,et al.  Electrospun nanomaterials for ultrasensitive sensors , 2010, Materials Today.

[16]  Ajay Agarwal,et al.  Label-free electrical detection of cardiac biomarker with complementary metal-oxide semiconductor-compatible silicon nanowire sensor arrays. , 2009, Analytical chemistry.

[17]  Yang Liu,et al.  Carbon nanofiber based electrochemical biosensors: A review , 2010 .

[18]  Yong Wang,et al.  Novel catalyst support materials for PEM fuel cells : current status and future prospects , 2009 .

[19]  S. Aldous,et al.  Cardiac biomarkers in acute myocardial infarction. , 2013, International journal of cardiology.

[20]  A. M. Shoushtari,et al.  The effect of diameter on the thermal properties of the modeled shape-stabilized phase change nanofibers (PCNs) , 2014, Journal of Thermal Analysis and Calorimetry.

[21]  Yilun Luo,et al.  Novel Biosensor Based on Electrospun Nanofiber and Magnetic Nanoparticles for the Detection of E. coli O157:H7 , 2012, IEEE Transactions on Nanotechnology.

[22]  Nitin Chopra,et al.  Functional One‐Dimensional Nanomaterials: Applications in Nanoscale Biosensors , 2007 .

[23]  Yongjun He Interfacial synthesis and characterization of polyaniline nanofibers , 2005 .

[24]  G. S. Wilson,et al.  Electrochemical biosensors: recommended definitions and classification. , 2001, Biosensors & bioelectronics.

[25]  Zhen Yang,et al.  Cardiac markers and their point-of-care testing for diagnosis of acute myocardial infarction. , 2006, Clinical biochemistry.

[26]  Jichang Wang,et al.  An electrochemical impedance sensor for the label-free ultrasensitive detection of interleukin-6 antigen , 2013 .

[27]  U Wollenberger,et al.  Research and development of biosensors. A review. , 1989, The Analyst.

[28]  Alan S Maisel,et al.  Biomarkers in acute myocardial injury. , 2012, Translational research : the journal of laboratory and clinical medicine.

[29]  Miriam M. Ngundi,et al.  Chemical Biological Sensors Based on Advances in Conducting Electroactive Polymers , 2003 .

[30]  Yuehe Lin,et al.  Functionalized carbon nanotubes and nanofibers for biosensing applications. , 2008, Trends in analytical chemistry : TRAC.

[31]  K. Senecal,et al.  ELECTROSPINNING TECHNOLOGY: A NOVEL APPROACH TO SENSOR APPLICATION , 2002 .

[32]  B. Nichols,et al.  Covalent Functionalization for Biomolecular Recognition on Vertically Aligned Carbon Nanofibers , 2005 .

[33]  Uttandaraman Sundararaj,et al.  A review of vapor grown carbon nanofiber/polymer conductive composites , 2009 .

[34]  P. Tran,et al.  Carbon nanofibers and carbon nanotubes in regenerative medicine. , 2009, Advanced drug delivery reviews.

[35]  J. Lemos Increasingly Sensitive Assays for Cardiac Troponins: A Review , 2013 .

[36]  P. Solanki,et al.  Nanostructured metal oxide-based biosensors , 2011 .

[37]  R. Hamers,et al.  Functionalized Vertically Aligned Carbon Nanofibers as Scaffolds for Immobilization and Electrochemical Detection of Redox-Active Proteins , 2006 .

[38]  Michael L. Simpson,et al.  Vertically Aligned Carbon Nanofibers and Related Structures: Controlled Synthesis and Directed Assembly , 2005 .

[39]  F. Apple,et al.  Implementation of serum cardiac troponin I as marker for detection of acute myocardial infarction. , 1999, American heart journal.

[40]  Hyun Tae Kim,et al.  A novel glucose biosensor based on immobilization of glucose oxidase into multiwall carbon nanotubes-polyelectrolyte-loaded electrospun nanofibrous membrane. , 2008, Biosensors & bioelectronics.

[41]  J. Niazi,et al.  Biosensors for cardiac biomarkers detection: A review , 2012 .

[42]  Devendra Kumar,et al.  Advances in sensors based on conducting polymers , 2006 .

[43]  B. D. Malhotra,et al.  Highly sensitive biofunctionalized mesoporous electrospun TiO(2) nanofiber based interface for biosensing. , 2014, ACS applied materials & interfaces.

[44]  Nomenclature and criteria for diagnosis of ischemic heart disease. Report of the Joint International Society and Federation of Cardiology/World Health Organization task force on standardization of clinical nomenclature. , 1979, Circulation.

[45]  Joseph Wang,et al.  Electrochemical biosensors: towards point-of-care cancer diagnostics. , 2006, Biosensors & bioelectronics.

[46]  Po-Chiang Chen,et al.  Chemical Sensors and Electronic Noses Based on 1-D Metal Oxide Nanostructures , 2008, IEEE Transactions on Nanotechnology.

[47]  Silvia Fabiano,et al.  Amperometric tyrosinase based biosensor using an electrogenerated polythiophene film as an entrapment support. , 2003, Talanta.

[48]  Molamma P. Prabhakaran,et al.  Fiber based enzyme-linked immunosorbent assay for C-reactive protein , 2014 .

[49]  María Soledad Belluzo,et al.  Assembling Amperometric Biosensors for Clinical Diagnostics , 2008, Sensors.

[50]  M. Meyyappan,et al.  Detection of ricin using a carbon nanofiber based biosensor. , 2011, Biosensors & bioelectronics.

[51]  Ulrich J Krull,et al.  Silicon nanowires as field-effect transducers for biosensor development: a review. , 2014, Analytica chimica acta.

[52]  M. Yun,et al.  Detection of Cardiac Biomarkers Using Single Polyaniline Nanowire-Based Conductometric Biosensors , 2012, Biosensors.

[53]  R. Hamers,et al.  Electrically Addressable Biomolecular Functionalization of Carbon Nanotube and Carbon Nanofiber Electrodes , 2004 .

[54]  Wei Zheng,et al.  Electrospun palladium (IV)-doped copper oxide composite nanofibers for non-enzymatic glucose sensors , 2009 .

[55]  Caofeng Pan,et al.  A Single ZnO Nanofiber-Based Highly Sensitive Amperometric Glucose Biosensor , 2010 .

[56]  Sang Jun Sim,et al.  Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments. , 2008, Analytical biochemistry.

[57]  M. Meyyappan,et al.  Label-free detection of C-reactive protein using a carbon nanofiber based biosensor. , 2014, Biosensors & bioelectronics.

[58]  M. Willander,et al.  Development of a disposable potentiometric antibody immobilized ZnO nanotubes based sensor for the detection of C-reactive protein , 2012 .

[59]  H. Tunstall-Pedoe,et al.  Myocardial Infarction and Coronary Deaths in the World Health Organization MONICA Project: Registration Procedures, Event Rates, and Case‐Fatality Rates in 38 Populations From 21 Countries in Four Continents , 1994, Circulation.

[60]  Jack H. Ladenson,et al.  Cardiac Troponin I A Marker With High Specificity for Cardiac Injury , 1993, Circulation.

[61]  R. O'Kennedy,et al.  Cardiac biomarkers and the case for point-of-care testing. , 2009, Clinical biochemistry.

[62]  H. Fong,et al.  A review: carbon nanofibers from electrospun polyacrylonitrile and their applications , 2013, Journal of Materials Science.

[63]  Antje J Baeumner,et al.  Biologically inspired nanofibers for use in translational bioanalytical systems. , 2014, Annual review of analytical chemistry.

[64]  L. Tang,et al.  Quantification of cardiac biomarkers using label-free and multiplexed gold nanorod bioprobes for myocardial infarction diagnosis. , 2014, Biosensors & bioelectronics.

[65]  Heather A Clark,et al.  Nanosensors and nanomaterials for monitoring glucose in diabetes. , 2010, Trends in molecular medicine.

[66]  Guo-Jun Zhang,et al.  An integrated chip for rapid, sensitive, and multiplexed detection of cardiac biomarkers from fingerprick blood. , 2011, Biosensors & bioelectronics.

[67]  S. Mannino,et al.  Nanofibrous membrane based tyrosinase-biosensor for the detection of phenolic compounds. , 2010, Analytica chimica acta.

[68]  Zhixiang Wei,et al.  Conducting polymer nanostructures and their application in biosensors. , 2010, Journal of colloid and interface science.

[69]  A. Zweck Safety Aspects of Engineered Nanomaterials , 2013 .

[70]  Mohammad Hasanzadeh,et al.  Electrochemical nano-immunosensing of effective cardiac biomarkers for acute myocardial infarction , 2013 .

[71]  Keiichi Kaneto,et al.  Amperometric phenol biosensor based on covalent immobilization of tyrosinase onto an electrochemically prepared novel copolymer poly (N-3-aminopropyl pyrrole-co-pyrrole) film , 2004 .

[72]  A. Agarwal,et al.  Label-free Detection of Proteins with Surface-functionalized Silicon Nanowires , 2009 .

[73]  S. Mannino,et al.  Nylon nanofibrous membrane for mediated glucose biosensing , 2010 .

[74]  Jong-in Hahm,et al.  Functional Polymers in Protein Detection Platforms: Optical, Electrochemical, Electrical, Mass-Sensitive, and Magnetic Biosensors , 2011, Sensors.

[75]  Hongjie Dai,et al.  Carbon nanotubes: synthesis, integration, and properties. , 2002, Accounts of chemical research.

[76]  Gerald J Kost,et al.  Point-of-Care Testing and Cardiac Biomarkers: The Standard of Care and Vision for Chest Pain Centers. , 2005, Cardiology clinics.

[77]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[78]  P. Patra,et al.  Nanostructured surfaces for enhanced protein detection toward clinical diagnostics. , 2010, Nanomedicine : nanotechnology, biology, and medicine.

[79]  Vertically aligned carbon nanofiber nanoelectrode arrays: electrochemical etching and electrode reusability. , 2014, RSC advances.

[80]  A. Baeumner,et al.  Recent progress in the design of nanofiber-based biosensing devices. , 2012, Lab on a chip.

[81]  Lijia Pan,et al.  Rational design and applications of conducting polymer hydrogels as electrochemical biosensors. , 2015, Journal of materials chemistry. B.

[82]  A. R. Ruslinda,et al.  Diagnostics on acute myocardial infarction: Cardiac troponin biomarkers. , 2015, Biosensors & bioelectronics.

[83]  Uda Hashim,et al.  Advances in biosensors: Principle, architecture and applications ☆ , 2014 .

[84]  Dong Wang,et al.  Controllable biotinylated poly(ethylene-co-glycidyl methacrylate) (PE-co-GMA) nanofibers to bind streptavidin-horseradish peroxidase (HRP) for potential biosensor applications , 2008 .

[85]  J. Rishpon,et al.  An Electrochemical Immunosensor for C-Reactive Protein Based on Multi-Walled Carbon Nanotube-Modified Electrodes , 2008 .

[86]  E. Bahadır,et al.  Applications of electrochemical immunosensors for early clinical diagnostics. , 2015 .

[87]  Qin Xin,et al.  Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells , 2003 .

[88]  M. Doktycz,et al.  Biochemical functionalization of vertically aligned carbon nanofibres , 2006 .

[89]  R. F. Dutra,et al.  A carbon nanotube-based electrochemical immunosensor for cardiac troponin T , 2013 .

[90]  G. Shalev,et al.  Specific and label-free femtomolar biomarker detection with an electrostatically formed nanowire biosensor , 2013 .

[91]  M. Meyyappan,et al.  Label-free detection of cardiac troponin-I using carbon nanofiber based nanoelectrode arrays. , 2013, Analytical chemistry.

[92]  Xinhua Xu,et al.  ELECTROSPUN POLY (VINYL ALCOHOL)/GLUCOSE OXIDASE BIOCOMPOSITE MEMBRANES FOR BIOSENSOR APPLICATIONS , 2006 .

[93]  P. Collinson,et al.  Point-of-care testing: a cardiologist's view. , 2001, Clinica chimica acta; international journal of clinical chemistry.

[94]  R. F. Dutra,et al.  A carbon nanotube screen-printed electrode for label-free detection of the human cardiac troponin T. , 2013, Talanta.

[95]  A. Gopalan,et al.  Electrospun poly(vinylidene fluoride)/poly(aminophenylboronic acid) composite nanofibrous membrane as a novel glucose sensor. , 2007, Analytical biochemistry.

[96]  Ashok Mulchandani,et al.  Nanowire‐Based Electrochemical Biosensors , 2006 .

[97]  P. Serp,et al.  Carbon nanotubes and nanofibers in catalysis , 2003 .

[98]  Lichao Feng,et al.  Carbon Nanofibers and Their Composites: A Review of Synthesizing, Properties and Applications , 2014, Materials.

[99]  Cobalt ferrite nanowhiskers as T2 MRI contrast agent , 2015 .

[100]  Daniel N. Tran,et al.  Enzyme Immobilization via Electrospinning , 2012, Topics in Catalysis.

[101]  Rafiq Ahmad,et al.  Chemical and biological sensors based on metal oxide nanostructures. , 2012, Chemical communications.

[102]  Minhee Yun,et al.  Highly sensitive single polyaniline nanowire biosensor for the detection of immunoglobulin G and myoglobin. , 2011, Biosensors & bioelectronics.

[103]  Inderpreet Kaur,et al.  Comparative study of carbon nanotube dispersion using surfactants. , 2008, Journal of colloid and interface science.

[104]  Zhi-Kang Xu,et al.  Enzyme immobilization on electrospun polymer nanofibers: An overview , 2009 .

[105]  R. Lequin Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). , 2005, Clinical chemistry.

[106]  Joseph Wang Nanomaterial-based electrochemical biosensors. , 2005, The Analyst.

[107]  Roland Wiesendanger,et al.  Nanoscience and technology , 1998 .

[108]  Rajesh,et al.  Biomolecular immobilization on conducting polymers for biosensing applications. , 2007, Biomaterials.

[109]  Chen-Zhong Li,et al.  Probing the Electrochemical Properties of Graphene Nanosheets for Biosensing Applications , 2009 .

[110]  A. Bard Electrochemical methods : fundamentals and applictions / Allen J. Bard, Larry R. Faulkner , 1980 .

[111]  W. O’Neill,et al.  Cardiac biomarkers – the old and the new: a review , 2010, Coronary artery disease.

[112]  P. Goswami,et al.  Heart type fatty acid binding protein: structure, function and biosensing applications for early detection of myocardial infarction. , 2013, Biosensors & bioelectronics.