Unconditional superconvergence analysis for nonlinear hyperbolic equation with nonconforming finite element

Nonlinear hyperbolic equation is studied by developing a linearized Galerkin finite element method (FEM) with nonconforming EQ1rot element. A time-discrete system is established to split the error into two parts which are called the temporal error and the spatial error, respectively. The temporal error is proved skillfully which leads to the analysis for the regularity of the time-discrete system. The spatial error is derived -independently with order O(h2+h) in broken H1-norm. The final unconditional superclose result of u with order O(h2+2) is deduced based on the above achievements. The two typical characters of this nonconforming EQ1rot element (see Lemma1 below) play an important role in the procedure of proof. At last, a numerical example is provided to support the theoretical analysis. Here, h is the subdivision parameter, and , the time step.

[1]  Huadong Gao,et al.  Optimal Error Analysis of Galerkin FEMs for Nonlinear Joule Heating Equations , 2013, Journal of Scientific Computing.

[2]  Dongyang Shi,et al.  Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation , 2016, Appl. Math. Comput..

[3]  Yang Liu,et al.  Analysis of mixed finite element methods for fourth-order wave equations , 2013, Comput. Math. Appl..

[4]  Zhaojie Zhou,et al.  An -Galerkin Expanded Mixed Finite Element Approximation of Second-Order Nonlinear Hyperbolic Equations , 2013 .

[5]  Weiwei Sun,et al.  Stabilized finite element method based on the Crank-Nicolson extrapolation scheme for the time-dependent Navier-Stokes equations , 2007, Math. Comput..

[6]  Weiwei Sun,et al.  A New Error Analysis of Characteristics-Mixed FEMs for Miscible Displacement in Porous Media , 2014, SIAM J. Numer. Anal..

[7]  Shi Dong-yang,et al.  Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation , 2016 .

[8]  Yunqing Huang,et al.  The full-discrete mixed finite element methods for nonlinear hyperbolic equations , 1998 .

[9]  Vidar Thomée,et al.  Numerical methods for hyperbolic and parabolic integro-differential equations , 1992 .

[10]  R. K. Mohanty,et al.  High order difference schemes for the system of two space second order nonlinear hyperbolic equations with variable coefficients , 1996 .

[11]  Weiwei Sun,et al.  Unconditionally Optimal Error Estimates of a Crank-Nicolson Galerkin Method for the Nonlinear Thermistor Equations , 2012, SIAM J. Numer. Anal..

[12]  Wei Liu,et al.  A two-grid method for finite volume element approximations of second-order nonlinear hyperbolic equations , 2010, J. Comput. Appl. Math..

[13]  Weiwei Sun,et al.  Unconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media , 2012, SIAM J. Numer. Anal..

[14]  Luming Zhang,et al.  New conservative difference schemes for a coupled nonlinear Schrödinger system , 2010, Appl. Math. Comput..

[15]  Weiwei Sun,et al.  Unconditional stability and error estimates of modified characteristics FEMs for the Navier–Stokes equations , 2015, Numerische Mathematik.

[16]  Jilu Wang,et al.  A New Error Analysis of Crank–Nicolson Galerkin FEMs for a Generalized Nonlinear Schrödinger Equation , 2014, J. Sci. Comput..

[17]  Dong-yang Shi,et al.  Superconvergence analysis of splitting positive definite nonconforming mixed finite element method for pseudo-hyperbolic equations , 2013 .

[18]  Jr. H. H. Rachford Two-Level Discrete-Time Galerkin Approximations for Second Order Nonlinear Parabolic Partial Differential Equations , 1973 .

[19]  G. A. Baker Error Estimates for Finite Element Methods for Second Order Hyperbolic Equations , 1976 .

[20]  Huadong Gao,et al.  Unconditional Optimal Error Estimates of BDF–Galerkin FEMs for Nonlinear Thermistor Equations , 2016, J. Sci. Comput..

[21]  Hongfei Fu,et al.  Superconvergence of the split least‐squares method for second‐order hyperbolic equations , 2014 .

[22]  Shao-chunChen,et al.  AN ANISOTROPIC NONCONFORMING FINITE ELEMENT WITH SOME SUPERCONVERGENCE RESULTS , 2005 .

[23]  Haiming Gu,et al.  Characteristic finite element methods for nonlinear Sobolev equations , 1999, Appl. Math. Comput..

[24]  D. Shi,et al.  Superconvergence analysis of the finite element method for nonlinear hyperbolic equations with nonlinear boundary condition , 2008 .

[25]  Weizhu Bao,et al.  Uniform Error Estimates of Finite Difference Methods for the Nonlinear Schrödinger Equation with Wave Operator , 2012, SIAM J. Numer. Anal..

[26]  Wei Gong,et al.  A low order characteristic-nonconforming finite element method for nonlinear Sobolev equation with convection-dominated term , 2015, Math. Comput. Simul..

[27]  Amiya K. Pani,et al.  Finite volume element method for second order hyperbolic equations , 2008 .

[28]  Yirang Yuan,et al.  Galerkin alternating-direction method for a kind of three-dimensional nonlinear hyperbolic problems , 2009, Comput. Math. Appl..

[29]  Chuan Miao Chen,et al.  Finite Element Methods for Integrodifferential Equations , 1998 .

[30]  Graeme Fairweather,et al.  An alternating direction Galerkin method for a class of second-order hyperbolic equations in two space variables , 1991 .

[31]  T. Dupont $L^2 $-Estimates for Galerkin Methods for Second Order Hyperbolic Equations , 1973 .

[32]  Q. Lin,et al.  Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation , 2005 .

[33]  BIYUE LIU,et al.  The Analysis of a Finite Element Method with Streamline Diffusion for the Compressible Navier-Stokes Equations , 2000, SIAM J. Numer. Anal..

[34]  Mitchell Luskin,et al.  A Galerkin Method for Nonlinear Parabolic Equations with Nonlinear Boundary Conditions , 1979 .