Towards Indistinguishable Augmented Reality

Adding virtual information that is indistinguishable from reality has been a long-awaited goal in Augmented Reality (AR). While already demonstrated in the 1960s, only recently have Optical See-Through Head-Mounted Displays (OST-HMDs) seen a reemergence, partially thanks to large investments from industry, and are now considered to be the ultimate hardware for augmenting our visual perception. In this article, we provide a thorough review of state-of-the-art OST-HMD-related techniques that are relevant to realize the aim of an AR interface almost indistinguishable from reality. In this work, we have an initial look at human perception to define requirements and goals for implementing such an interface. We follow up by identifying three key challenges for building an OST-HMD-based AR interface that is indistinguishable from reality: spatial realism, temporal realism, and visual realism. We discuss existing works that aim to overcome these challenges while also reflecting against the goal set by human perception. Finally, we give an outlook into promising research directions and expectations for the years to come.

[1]  Yifan Peng,et al.  Holographic near-eye displays based on overlap-add stereograms , 2019, ACM Trans. Graph..

[2]  Gordon Wetzstein,et al.  A survey on computational displays: Pushing the boundaries of optics, computation, and perception , 2013, Comput. Graph..

[3]  Kwangsoo Kim,et al.  Occlusion-capable Head-mounted Display , 2019, PHOTOPTICS.

[4]  Daniel J. Wigdor,et al.  Designing for low-latency direct-touch input , 2012, UIST.

[5]  Oliver Bimber,et al.  Embedded entertainment with smart projectors , 2005, Computer.

[6]  Yuta Itoh,et al.  Varifocal Occlusion for Optical See-Through Head-Mounted Displays using a Slide Occlusion Mask , 2019, IEEE Transactions on Visualization and Computer Graphics.

[7]  David W. Murray,et al.  Compositing for small cameras , 2008, 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality.

[8]  Josef B. Spjut,et al.  Steerable application-adaptive near eye displays , 2018, SIGGRAPH Emerging Technologies.

[9]  Jannick P. Rolland,et al.  See-Through Head Worn Display (HWD) Architectures , 2012, Handbook of Visual Display Technology.

[10]  Hong Hua,et al.  Occlusion capable optical see-through head-mounted display using freeform optics , 2012, 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

[11]  Gudrun Klinker,et al.  Semi-Parametric Color Reproduction Method for Optical See-Through Head-Mounted Displays , 2015, IEEE Transactions on Visualization and Computer Graphics.

[12]  Simon E. Skalicky,et al.  Temporal Properties of Vision , 2016 .

[13]  Mark R. Mine Characterization of End-to-End Delays in Head-Mounted Display Systems , 1993 .

[14]  Henry Fuchs,et al.  Optical Versus Video See-Through Head-Mounted Displays in Medical Visualization , 2000, Presence: Teleoperators & Virtual Environments.

[15]  Tom Drummond,et al.  Sensor fusion and occlusion refinement for tablet-based AR , 2004, Third IEEE and ACM International Symposium on Mixed and Augmented Reality.

[16]  Alexei A. Goon,et al.  Multifocal planes head-mounted displays. , 2000, Applied optics.

[17]  Ronald Azuma,et al.  Predictive tracking for augmented reality , 1995 .

[18]  Hong Hua,et al.  Design and prototype of an augmented reality display with per-pixel mutual occlusion capability. , 2017, Optics express.

[19]  Kiyoshi Kiyokawa An Introduction to Head Mounted Displays for Augmented Reality , 2007 .

[20]  Holger Regenbrecht,et al.  Out of reach? — A novel AR interface approach for motor rehabilitation , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[21]  Xin Li,et al.  Monocular 3D see-through head-mounted display via complex amplitude modulation. , 2016, Optics express.

[22]  Anselmo Lastra,et al.  From Motion to Photons in 80 Microseconds: Towards Minimal Latency for Virtual and Augmented Reality , 2016, IEEE Transactions on Visualization and Computer Graphics.

[23]  Ian P. Howard,et al.  Binocular Vision and Stereopsis , 1996 .

[24]  Yuta Itoh,et al.  DehazeGlasses: Optical Dehazing with an Occlusion Capable See-Through Display , 2020, AHs.

[25]  Henry Fuchs,et al.  FocusAR: Auto-focus Augmented Reality Eyeglasses for both Real World and Virtual Imagery , 2018, IEEE Transactions on Visualization and Computer Graphics.

[26]  Mtm Marc Lambooij,et al.  Visual Discomfort and Visual Fatigue of Stereoscopic Displays: A Review , 2009 .

[27]  Hong Hua,et al.  High dynamic range head mounted display based on dual-layer spatial modulation. , 2017, Optics express.

[28]  Holger Regenbrecht,et al.  Visual Coherence in Mixed Reality: A Systematic Enquiry , 2017, PRESENCE: Teleoperators and Virtual Environments.

[29]  Wolfgang Heiden,et al.  Colorimetric and Photometric Compensation for Optical See-Through Displays , 2009, HCI.

[30]  Henry Fuchs,et al.  10‐1: Towards Varifocal Augmented Reality Displays using Deformable Beamsplitter Membranes , 2018 .

[31]  Ronald Azuma,et al.  Improving static and dynamic registration in an optical see-through HMD , 1994, SIGGRAPH.

[32]  Mary C. Whitton,et al.  Scene-adaptive high dynamic range display for low latency augmented reality , 2017, I3D.

[33]  Jonghyun Kim,et al.  Toward Standardized Classification of Foveated Displays , 2019, IEEE Transactions on Visualization and Computer Graphics.

[34]  J P Rolland,et al.  High-resolution inset head-mounted display. , 1998, Applied optics.

[35]  Stephen DiVerdi,et al.  Image-space Correction of AR Registration Errors Using Graphics Hardware , 2006, IEEE Virtual Reality Conference (VR 2006).

[36]  Hong Hua,et al.  Enabling Focus Cues in Head-Mounted Displays , 2017, Proceedings of the IEEE.

[37]  Yusufu Sulai,et al.  Foveated near-eye display for mixed reality using liquid crystal photonics , 2020, Scientific Reports.

[38]  Holger Regenbrecht,et al.  ChromaGlasses: Computational Glasses for Compensating Colour Blindness , 2018, CHI.

[39]  D. Luebke,et al.  Near-eye light field displays , 2013, ACM Trans. Graph..

[40]  J. Edward Swan,et al.  More than meets the eye: An engineering study to empirically examine the blending of real and virtual color spaces , 2010, 2010 IEEE Virtual Reality Conference (VR).

[41]  Holger Regenbrecht,et al.  Real-Time Radiometric Compensation for Optical See-Through Head-Mounted Displays , 2016, IEEE Transactions on Visualization and Computer Graphics.

[42]  Ivan E. Sutherland,et al.  A head-mounted three dimensional display , 1968, AFIPS Fall Joint Computing Conference.

[43]  H. Bastian Sensation and Perception.—I , 1869, Nature.

[44]  Yifan Peng,et al.  Wirtinger holography for near-eye displays , 2019, ACM Trans. Graph..

[45]  Douglas Lanman,et al.  Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources , 2014, SIGGRAPH '14.

[46]  Douglas Lanman,et al.  Focal surface displays , 2017, ACM Trans. Graph..

[47]  Daniel J. Wigdor,et al.  How fast is fast enough?: a study of the effects of latency in direct-touch pointing tasks , 2013, CHI.

[48]  Kiyoshi Kiyokawa Occlusion Displays , 2012, Handbook of Visual Display Technology.

[49]  Byoungho Lee,et al.  Dual-focal waveguide see-through near-eye display with polarization-dependent lenses. , 2019, Optics letters.

[50]  Changwon Jang,et al.  Retinal 3D , 2017, ACM Trans. Graph..

[51]  Mark A. Livingston,et al.  The effect of registration error on tracking distant augmented objects , 2008, 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality.

[52]  Bernard C. Kress,et al.  Optical Architectures for Augmented-, Virtual-, and Mixed-Reality Headsets , 2020 .

[53]  Mary C. Whitton,et al.  Relating Scene-Motion Thresholds to Latency Thresholds for Head-Mounted Displays , 2009, 2009 IEEE Virtual Reality Conference.

[54]  Hiroyuki Ohno,et al.  An optical see-through display for mutual occlusion of real and virtual environments , 2000, Proceedings IEEE and ACM International Symposium on Augmented Reality (ISAR 2000).

[55]  Henry Fuchs,et al.  An Extended Depth-at-Field Volumetric Near-Eye Augmented Reality Display , 2018, IEEE Transactions on Visualization and Computer Graphics.

[56]  James F. O'Brien,et al.  Optimal presentation of imagery with focus cues on multi-plane displays , 2015, ACM Trans. Graph..

[57]  John J. Leonard,et al.  Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age , 2016, IEEE Transactions on Robotics.

[58]  Gudrun Klinker,et al.  OST Rift: Temporally consistent augmented reality with a consumer optical see-through head-mounted display , 2016, 2016 IEEE Virtual Reality (VR).

[59]  Gordon Wetzstein,et al.  Factored Occlusion: Single Spatial Light Modulator Occlusion-capable Optical See-through Augmented Reality Display , 2020, IEEE Transactions on Visualization and Computer Graphics.

[60]  David Dunn,et al.  Required Accuracy of Gaze Tracking for Varifocal Displays , 2019, 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).

[61]  Dieter Schmalstieg,et al.  Next-Generation Augmented Reality Browsers: Rich, Seamless, and Adaptive , 2014, Proceedings of the IEEE.

[62]  Ronald Azuma,et al.  A Survey of Augmented Reality , 1997, Presence: Teleoperators & Virtual Environments.

[63]  Xin Li,et al.  Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter. , 2017, Optics express.

[64]  Gordon Wetzstein,et al.  Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays , 2017, Proceedings of the National Academy of Sciences.

[65]  S. Suyama,et al.  Three-Dimensional Display System with Dual-Frequency Liquid-Crystal Varifocal Lens , 2000 .

[66]  R. W. Evans,et al.  Head-up displays in motor cars , 1989 .

[67]  Kiyoshi Kiyokawa A Wide Field-of-view Head Mounted Projective Display using Hyperbolic Half-silvered Mirrors , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[68]  Yuta Itoh,et al.  Retinal HDR: HDR image projection method onto retina , 2018, SIGGRAPH ASIA Posters.

[69]  Joonku Hahn,et al.  Holographic head-mounted display with RGB light emitting diode light source. , 2014, Optics express.

[70]  Gudrun Klinker,et al.  Light-Field Correction for Spatial Calibration of Optical See-Through Head-Mounted Displays , 2015, IEEE Transactions on Visualization and Computer Graphics.

[71]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[72]  H. Mukawa,et al.  8.4: Distinguished Paper: A Full Color Eyewear Display Using Holographic Planar Waveguides , 2008 .

[73]  Holger Regenbrecht,et al.  Audio stickies: visually-guided spatial audio annotations on a mobile augmented reality platform , 2013, OZCHI.

[74]  Peter Kazanzides,et al.  Restoring the Awareness in the Occluded Visual Field for Optical See-Through Head-Mounted Displays , 2018, IEEE Transactions on Visualization and Computer Graphics.

[75]  Gordon Wetzstein,et al.  Varifocal Occlusion-Capable Optical See-through Augmented Reality Display based on Focus-tunable Optics , 2019, IEEE Transactions on Visualization and Computer Graphics.

[76]  André Stork,et al.  The daylight blocking optical stereo see-through HMD , 2008, IPT/EDT '08.

[77]  David M. Hoffman,et al.  Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. , 2008, Journal of vision.

[78]  Yongtian Wang,et al.  Design of a wide-angle, lightweight head-mounted display using free-form optics tiling. , 2011, Optics letters.

[79]  Dieter Schmalstieg,et al.  Simultaneous Localization and Mapping for Augmented Reality , 2010, 2010 International Symposium on Ubiquitous Virtual Reality.

[80]  Dirk Bartz,et al.  Stylized augmented reality for improved immersion , 2005, IEEE Proceedings. VR 2005. Virtual Reality, 2005..

[81]  J. Rolland,et al.  Head-worn displays: a review , 2006, Journal of Display Technology.

[82]  Gordon Wetzstein,et al.  The light field stereoscope , 2015, ACM Trans. Graph..

[83]  Byoungho Lee,et al.  Metasurface eyepiece for augmented reality , 2018, Nature Communications.

[84]  Hirokazu Kato,et al.  EyeAR: Refocusable Augmented Reality Content through Eye Measurements , 2017 .

[85]  Laura Waller,et al.  High resolution étendue expansion for holographic displays , 2020, ACM Trans. Graph..

[86]  Anselm Grundhöfer,et al.  Recent Advances in Projection Mapping Algorithms, Hardware and Applications , 2018, Comput. Graph. Forum.

[87]  DehazeGlasses , 2020, Proceedings of the Augmented Humans International Conference.

[88]  J Reimer Wolter,et al.  Adler's Physiology of the Eye , 1971 .

[89]  C. Wheatstone XVIII. Contributions to the physiology of vision. —Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision , 1962, Philosophical Transactions of the Royal Society of London.

[90]  Hakan Urey,et al.  Foveated near-eye display using computational holography , 2020, Scientific Reports.

[91]  Rachel A. Albert,et al.  Foveated AR: Dynamically-Foveated Augmented Reality Display , 2019 .

[92]  Yasuhiro Takaki,et al.  See-through integral imaging display with background occlusion capability. , 2016, Applied optics.

[93]  Daisuke Iwai,et al.  Gaussian Light Field: Estimation of Viewpoint-Dependent Blur for Optical See-Through Head-Mounted Displays , 2016, IEEE Transactions on Visualization and Computer Graphics.

[94]  Takeshi Oishi,et al.  Visibility-based blending for real-time applications , 2014, 2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

[95]  P. H. Lindsay,et al.  Human Information Processing: An Introduction to Psychology , 1972 .

[96]  Henry Fuchs,et al.  Computational augmented reality eyeglasses , 2013, 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

[97]  Frank Tong,et al.  Foundations of Vision , 2018 .

[98]  Yikai Su,et al.  A multi‐plane optical see‐through head mounted display design for augmented reality applications , 2016 .

[99]  Dennis A. Vincenzi,et al.  The Effect of Apparent Latency on Simulator Sickness While Using a See-Through Helmet-Mounted Display , 2012, Hum. Factors.

[100]  S. Min,et al.  Focus-free head-mounted display based on Maxwellian view using retroreflector film. , 2019, Applied optics.

[101]  Yuta Itoh,et al.  Occlusion Leak Compensation for Optical See-Through Displays Using a Single-Layer Transmissive Spatial Light Modulator , 2017, IEEE Transactions on Visualization and Computer Graphics.

[102]  Fan Xiao,et al.  Display-relative calibration for optical see-through head-mounted displays , 2004, Third IEEE and ACM International Symposium on Mixed and Augmented Reality.

[103]  Gregory Kramida,et al.  Resolving the Vergence-Accommodation Conflict in Head-Mounted Displays , 2016, IEEE Transactions on Visualization and Computer Graphics.

[104]  B. Kress,et al.  Waveguide combiners for mixed reality headsets: a nanophotonics design perspective , 2020, Frontiers in Optics and Photonics.

[105]  L. Onural,et al.  Circular holographic video display system. , 2011, Optics express.

[106]  David R. Flatla,et al.  Color correction for optical see-through displays using display color profiles , 2013, VRST '13.

[107]  Yuta Itoh,et al.  StainedView: Variable-Intensity Light-Attenuation Display with Cascaded Spatial Color Filtering for Improved Color Fidelity , 2020, IEEE Transactions on Visualization and Computer Graphics.

[108]  John R. Wilson,et al.  Virtual Reality-Induced Symptoms and Effects (VRISE) , 1999, Presence: Teleoperators & Virtual Environments.

[109]  Hirokazu Kato,et al.  SharpView: Improved clarity of defocused content on optical see-through head-mounted displays , 2016, 2016 IEEE Symposium on 3D User Interfaces (3DUI).

[110]  Hung-Chi Lee,et al.  Humans perceive flicker artifacts at 500 Hz , 2015, Scientific Reports.

[111]  Joohwan Kim,et al.  Towards foveated rendering for gaze-tracked virtual reality , 2016, ACM Trans. Graph..

[112]  Wojciech Matusik,et al.  Near-eye light field holographic rendering with spherical waves for wide field of view interactive 3D computer graphics , 2017, ACM Trans. Graph..

[113]  Dieter Schmalstieg,et al.  Efficient and robust radiance transfer for probeless photorealistic augmented reality , 2014, 2014 IEEE Virtual Reality (VR).

[114]  Fumio Kishino,et al.  Augmented reality: a class of displays on the reality-virtuality continuum , 1995, Other Conferences.

[115]  YIFAN PENG,et al.  Neural holography with camera-in-the-loop training , 2020, ACM Trans. Graph..

[116]  Yong Hyub Won,et al.  Enhanced see-through near-eye display using time-division multiplexing of a Maxwellian-view and holographic display. , 2019, Optics express.

[117]  Thad Starner,et al.  A review of head-mounted displays (HMD) technologies and applications for consumer electronics , 2013, Defense, Security, and Sensing.

[118]  Joohwan Kim,et al.  Foveated AR , 2019, ACM Trans. Graph..

[119]  Changwon Jang,et al.  Display technologies for augmented reality , 2018, OPTO.

[120]  Katerina Mania,et al.  Near‐Eye Display and Tracking Technologies for Virtual and Augmented Reality , 2019, Comput. Graph. Forum.

[121]  Desney S. Tan,et al.  Foveated 3D graphics , 2012, ACM Trans. Graph..

[122]  Nassir Navab,et al.  Single-Point Active Alignment Method (SPAAM) for Optical See-Through HMD Calibration for Augmented Reality , 2002, Presence: Teleoperators & Virtual Environments.

[123]  L. Onural,et al.  State of the Art in Holographic Displays: A Survey , 2010, Journal of Display Technology.

[124]  Daisuke Iwai,et al.  Light Attenuation Display: Subtractive See-Through Near-Eye Display via Spatial Color Filtering , 2019, IEEE Transactions on Visualization and Computer Graphics.

[125]  Jahanzaib Shabbir,et al.  RGB-Depth SLAM Review , 2018, ArXiv.

[126]  Byoungho Lee,et al.  Foveated Retinal Optimization for See-Through Near-Eye Multi-Layer Displays , 2018, IEEE Access.

[127]  Wolfgang Heidrich,et al.  High dynamic range display systems , 2004, SIGGRAPH 2004.

[128]  Christian Sandor,et al.  BrightView: Increasing Perceived Brightness of Optical See-Through Head-Mounted Displays Through Unnoticeable Incident Light Reduction , 2018, 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).

[129]  Jannick P. Rolland,et al.  A compact optical see-through head-worn display with occlusion support , 2004, Third IEEE and ACM International Symposium on Mixed and Augmented Reality.

[130]  Yuta Itoh,et al.  Light field blender: designing optics and rendering methods for see-through and aerial near-eye display , 2017, SIGGRAPH Asia Technical Briefs.

[131]  王涌天,et al.  Light field head-mounted display with correct focus cue using micro structure array , 2014 .

[132]  Donald P. Greenberg,et al.  A model of visual adaptation for realistic image synthesis , 1996, SIGGRAPH.

[133]  Hong Hua,et al.  Design and demonstration of a vari-focal optical see-through head-mounted display using freeform Alvarez lenses. , 2019, Optics express.

[134]  O. Bimber Spatial Augmented Reality , 2004, Third IEEE and ACM International Symposium on Mixed and Augmented Reality.

[135]  Martin Klemm,et al.  Non-parametric Camera-Based Calibration of Optical See-Through Glasses for AR Applications , 2016, 2016 International Conference on Cyberworlds (CW).

[136]  Sheng Liu,et al.  An optical see-through head mounted display with addressable focal planes , 2008, 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality.

[137]  Bahram Javidi,et al.  A 3D integral imaging optical see-through head-mounted display. , 2014, Optics express.

[138]  Kiyoshi Kiyokawa,et al.  Trends and Vision of Head Mounted Display in Augmented Reality , 2012, 2012 International Symposium on Ubiquitous Virtual Reality.

[139]  Andreas Georgiou,et al.  Holographic near-eye displays for virtual and augmented reality , 2017, ACM Trans. Graph..

[140]  Ramesh Raskar,et al.  Modern approaches to augmented reality: introduction to current approaches , 2006, SIGGRAPH Courses.

[141]  Holger Regenbrecht,et al.  Preaching Voxels: An Alternative Approach to Mixed Reality , 2019, Front. ICT.

[142]  Erik Reinhard,et al.  A reassessment of the simultaneous dynamic range of the human visual system , 2010, APGV '10.

[143]  Eric M. Howlett,et al.  High-resolution inserts in wide-angle head-mounted stereoscopic displays , 1992, Electronic Imaging.

[144]  Eyal Ofek,et al.  FoveAR: Combining an Optically See-Through Near-Eye Display with Projector-Based Spatial Augmented Reality , 2015, UIST.

[145]  Douglas Lanman,et al.  DeepFocus: learned image synthesis for computational displays , 2019, ACM Trans. Graph..

[146]  Gordon Wetzstein,et al.  Optical Image Processing Using Light Modulation Displays , 2010, Comput. Graph. Forum.

[147]  Liangcai Cao,et al.  Progress in virtual reality and augmented reality based on holographic display. , 2018, Applied optics.

[148]  Holger Regenbrecht,et al.  Mixed Voxel Reality: Presence and Embodiment in Low Fidelity, Visually Coherent, Mixed Reality Environments , 2017, 2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

[149]  Martin S. Banks,et al.  A stereo display prototype with multiple focal distances , 2004, SIGGRAPH 2004.

[150]  Andrew Maimone,et al.  Holographic optics for thin and lightweight virtual reality , 2020, ACM Trans. Graph..

[151]  Chang-Kun Lee,et al.  Holographic and light-field imaging for augmented reality , 2017, OPTO.

[152]  Hong Hua,et al.  Optical see-through head-mounted display with occlusion capability , 2013, Defense, Security, and Sensing.

[153]  Hirokazu Kato,et al.  Marker tracking and HMD calibration for a video-based augmented reality conferencing system , 1999, Proceedings 2nd IEEE and ACM International Workshop on Augmented Reality (IWAR'99).

[154]  Jens Grubert,et al.  A Survey of Calibration Methods for Optical See-Through Head-Mounted Displays , 2017, IEEE Transactions on Visualization and Computer Graphics.

[155]  Steven K. Feiner,et al.  Perceptual issues in augmented reality revisited , 2010, 2010 IEEE International Symposium on Mixed and Augmented Reality.

[156]  Hong Hua,et al.  Head-Mounted Display Systems , 2005 .

[157]  Christian Sandor,et al.  User Preference for SharpView-Enhanced Virtual Text During Non-Fixated Viewing , 2018, 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).

[158]  J. Koenderink,et al.  Sensitivity to spatiotemporal colour contrast in the peripheral visual field , 1983, Vision Research.

[159]  Dieter Schmalstieg,et al.  Robust and unobtrusive marker tracking on mobile phones , 2008, 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality.

[160]  Jan Kautz,et al.  Slim near-eye display using pinhole aperture arrays. , 2015, Applied optics.

[161]  Anselmo Lastra,et al.  Minimizing latency for augmented reality displays: Frames considered harmful , 2014, 2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

[162]  Rosa María Baños,et al.  Using augmented reality to treat phobias , 2005, IEEE Computer Graphics and Applications.

[163]  Robert L. Myers,et al.  Display Interfaces: Fundamentals and Standards , 2002 .

[164]  Henry Fuchs,et al.  Manufacturing Application-Driven Foveated Near-Eye Displays , 2019, IEEE Transactions on Visualization and Computer Graphics.

[165]  Woodrow Barfield,et al.  Haptic Augmented Reality: Taxonomy, Research Status, and Challenges , 2015 .

[166]  Gudrun Klinker,et al.  Performance and sensitivity analysis of INDICA: INteraction-Free DIsplay CAlibration for Optical See-Through Head-Mounted Displays , 2014, 2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

[167]  Byoungho Lee,et al.  Compact three-dimensional head-mounted display system with Savart plate. , 2016, Optics express.

[168]  James E. Cutting,et al.  HIGH-PERFORMANCE COMPUTING AND HUMAN VISION I , 2002 .

[169]  Tat-Jen Cham,et al.  Towards a Switchable AR/VR Near-eye Display with Accommodation-Vergence and Eyeglass Prescription Support , 2019, IEEE Transactions on Visualization and Computer Graphics.

[170]  Mark Billinghurst,et al.  An occlusion capable optical see-through head mount display for supporting co-located collaboration , 2003, The Second IEEE and ACM International Symposium on Mixed and Augmented Reality, 2003. Proceedings..

[171]  Gordon Wetzstein,et al.  Accommodation-invariant computational near-eye displays , 2017, ACM Trans. Graph..

[172]  Yasushi Yagi,et al.  Super Wide Field of View Head Mounted Display Using Catadioptrical Optics , 2006, PRESENCE: Teleoperators and Virtual Environments.

[173]  Henry Fuchs,et al.  Comparison of optical and video see-through, head-mounted displays , 1995, Other Conferences.