Linking data to models: data regression

Mathematical models are an essential tool in systems biology, linking the behaviour of a system to the interactions between its components. Parameters in empirical mathematical models must be determined using experimental data, a process called regression. Because experimental data are noisy and incomplete, diagnostics that test the structural identifiability and validity of models and the significance and determinability of their parameters are needed to ensure that the proposed models are supported by the available data.

[1]  Anthony A. Smith,et al.  Estimating Nonlinear Time-Series Models Using Simulated Vector Autoregressions , 1993 .

[2]  H M Buettner,et al.  Kinetics of microtubule catastrophe assessed by probabilistic analysis. , 1995, Biophysical journal.

[3]  M. Kirschner,et al.  Dynamic instability of microtubule growth , 1984, Nature.

[4]  Maria Rodriguez-Fernandez,et al.  A hybrid approach for efficient and robust parameter estimation in biochemical pathways. , 2006, Bio Systems.

[5]  G. Roberts,et al.  Bayesian inference for partially observed stochastic epidemics , 1999 .

[6]  S. Redman Quantal analysis of synaptic potentials in neurons of the central nervous system. , 1990, Physiological reviews.

[7]  A. Arkin Synthetic cell biology. , 2001, Current opinion in biotechnology.

[8]  R. Eils,et al.  Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis , 2004, The Journal of cell biology.

[9]  Karl-Rudolf Koch,et al.  Parameter estimation and hypothesis testing in linear models , 1988 .

[10]  C. J.,et al.  Predicting Temporal Fluctuations in an Intracellular Signalling Pathway , 1998 .

[11]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[12]  Douglas B. Kell,et al.  Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation , 1998, Bioinform..

[13]  D. Koller,et al.  From signatures to models: understanding cancer using microarrays , 2005, Nature Genetics.

[14]  Darren J. Wilkinson Stochastic Modelling for Systems Biology , 2006 .

[15]  A. Fagen,et al.  Microtubules grow and shorten at intrinsically variable rates. , 1992, The Journal of biological chemistry.

[16]  David W. Bacon,et al.  Modeling Ethylene/Butene Copolymerization with Multi‐site Catalysts: Parameter Estimability and Experimental Design , 2003 .

[17]  A. W. Gruent DATA PROCESSING METHODS FOR AMATEUR PHOTOGRAPHS , 2006 .

[18]  David J Odde,et al.  Mechanisms of microtubule-based kinetochore positioning in the yeast metaphase spindle. , 2003, Biophysical journal.

[19]  Roland Eils,et al.  Inferring genetic regulatory logic from expression data , 2005, Bioinform..

[20]  E. Salmon,et al.  Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies , 1988, The Journal of cell biology.

[21]  Wenxin Jiang,et al.  The Indirect Method: Inference Based on Intermediate Statistics—A Synthesis and Examples , 2004 .

[22]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[23]  D. Lauffenburger,et al.  A Systems Model of Signaling Identifies a Molecular Basis Set for Cytokine-Induced Apoptosis , 2005, Science.

[24]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[25]  Joseph G. Ibrahim,et al.  Monte Carlo Methods in Bayesian Computation , 2000 .

[26]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[27]  A. van Oudenaarden,et al.  Noise Propagation in Gene Networks , 2005, Science.

[28]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[29]  K. Sachs,et al.  Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data , 2005, Science.

[30]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[31]  C A Gilligan,et al.  Bayesian analysis of botanical epidemics using stochastic compartmental models. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Gaudenz Danuser,et al.  Parametric Model Fitting: From Inlier Characterization to Outlier Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[34]  Darren J. Wilkinson,et al.  Bayesian Sequential Inference for Stochastic Kinetic Biochemical Network Models , 2006, J. Comput. Biol..

[35]  P. Swain,et al.  Gene Regulation at the Single-Cell Level , 2005, Science.

[36]  D. Hand,et al.  Bayesian coclustering of Anopheles gene expression time series: study of immune defense response to multiple experimental challenges. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Matthew C. Coleman,et al.  Bayesian parameter estimation with informative priors for nonlinear systems , 2006 .

[38]  Derek A. Roff,et al.  DISTRIBUTION-FREE AND ROBUST STATISTICAL METHODS: VIABLE ALTERNATIVES TO PARAMETRIC STATISTICS? , 1993 .

[39]  Gaudenz Danuser,et al.  Comparative autoregressive moving average analysis of kinetochore microtubule dynamics in yeast. , 2006, Biophysical journal.

[40]  D. Kleinbaum,et al.  Applied Regression Analysis and Multivariable Methods , 1999 .

[41]  B. Efron Nonparametric estimates of standard error: The jackknife, the bootstrap and other methods , 1981 .

[42]  S. Shaw,et al.  Astral Microtubule Dynamics in Yeast: A Microtubule-based Searching Mechanism for Spindle Orientation and Nuclear Migration into the Bud , 1997, The Journal of cell biology.

[43]  A. Gallant,et al.  Which Moments to Match? , 1995, Econometric Theory.

[44]  Kerry Bloom,et al.  Tension-dependent regulation of microtubule dynamics at kinetochores can explain metaphase congression in yeast. , 2005, Molecular biology of the cell.

[45]  Peter J. Woolf,et al.  Bayesian analysis of signaling networks governing embryonic stem cell fate decisions , 2005, Bioinform..

[46]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[47]  M. Barenco,et al.  Ranked prediction of p53 targets using hidden variable dynamic modeling , 2006, Genome Biology.

[48]  M. Bennett,et al.  Statistics of transmitter release at nerve terminals , 2000, Progress in Neurobiology.

[49]  John G. Albeck,et al.  Cue-Signal-Response Analysis of TNF-Induced Apoptosis by Partial Least Squares Regression of Dynamic Multivariate Data , 2004, J. Comput. Biol..

[50]  Arild Thowsen,et al.  Structural identifiability , 1977, 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications.

[51]  D. Koshland,et al.  Non-genetic individuality: chance in the single cell , 1976, Nature.

[52]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[53]  E. Gilles,et al.  Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors , 2002, Nature Biotechnology.

[54]  G Danuser,et al.  Yeast kinetochore microtubule dynamics analyzed by high-resolution three-dimensional microscopy. , 2005, Biophysical journal.

[55]  Rudiyanto Gunawan,et al.  Iterative approach to model identification of biological networks , 2005, BMC Bioinformatics.

[56]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[57]  Gene H. Golub,et al.  An analysis of the total least squares problem , 1980, Milestones in Matrix Computation.