Contour interpolation by vector-field combination.

We model the visual interpolation of missing contours by extending contour fragments under a smoothness constraint. Interpolated trajectories result from an algorithm that computes the vector sum of two fields corresponding to different unification factors: the good continuation (GC) field and the minimal path (MP) field. As the distance from terminators increases, the GC field decreases and the MP field increases. Viewer-independent and viewer-dependent variables modulate GC-MP contrast (i.e., the relative strength of GC and MP maximum vector magnitudes). Viewer-independent variables include the local geometry as well as more global properties such as contour support ratio and shape regularity. Viewer-dependent variables include the retinal gap between contour endpoints and the retinal orientation of their stems. GC-MP contrast is the only free parameter of our field model. In the case of partially occluded angles, interpolated trajectories become flatter as GC-MP contrast decreases. Once GC-MP contrast is set to a specific value, derived from empirical measures on a given configuration, the model predicts all interpolation trajectories corresponding to different types of occlusion of the same angle. Model predictions fit psychophysical data on the effects of viewer-independent and viewer-dependent variables.

[1]  D'arcy W. Thompson On Growth and Form , 1945 .

[2]  D'arcy W. Thompson On growth and form i , 1943 .

[3]  M. Wertheimer Untersuchungen zur Lehre von der Gestalt. II , 1923 .

[4]  O. Reiser,et al.  Principles Of Gestalt Psychology , 1936 .

[5]  I. S. Sokolnikoff Mathematical theory of elasticity , 1946 .

[6]  W. G. Bickley Mathematical Theory Of Elasticity , 1946, Nature.

[7]  Susan T. Dumais,et al.  The effects of illumination level and retinal size on the apparent strength of subjective contours , 1976 .

[8]  E. Leeuwenberg,et al.  Coding theory of visual pattern completion. , 1981, Journal of experimental psychology. Human perception and performance.

[9]  Eric L. W. Grimson,et al.  From Images to Surfaces: A Computational Study of the Human Early Visual System , 1981 .

[10]  Walter Gerbino,et al.  Amodal completion: Seeing or thinking? , 1982 .

[11]  J. Beck Organization and representation in perception , 1982 .

[12]  Berthold K. P. Horn The Curve of Least Energy , 1983, TOMS.

[13]  Azriel Rosenfeld,et al.  Human and Machine Vision , 1983 .

[14]  A. Witkin,et al.  On the Role of Structure in Vision , 1983 .

[15]  Isaac Weiss 3-D Shape Representation by Contours , 1985, IJCAI.

[16]  W. Epstein,et al.  The status of the minimum principle in the theoretical analysis of visual perception. , 1985, Psychological bulletin.

[17]  S. Grossberg,et al.  Neural dynamics of form perception: boundary completion, illusory figures, and neon color spreading. , 1985, Psychological review.

[18]  P. Griffiths,et al.  Reduction for Constrained Variational Problems and κ 2 2 ds , 1986 .

[19]  G. Kanizsa,et al.  Can We See Constructs , 1987 .

[20]  S. Petry,et al.  The Perception of Illusory Contours , 1987 .

[21]  K Nakayama,et al.  Stereoscopic Depth: Its Relation to Image Segmentation, Grouping, and the Recognition of Occluded Objects , 1989, Perception.

[22]  P. Kellman,et al.  A theory of visual interpolation in object perception , 1991, Cognitive Psychology.

[23]  R. Patterson,et al.  Human Stereopsis , 1992, Human factors.

[24]  P. Kellman,et al.  Strength of visual interpolation depends on the ratio of physically specified to total edge length , 1992, Perception & psychophysics.

[25]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[26]  Gérard G. Medioni,et al.  Inferring global perceptual contours from local features , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[27]  Rüdiger von der Heydt,et al.  A computational model of neural contour processing: Figure-ground segregation and illusory contours , 1993, 1993 (4th) International Conference on Computer Vision.

[28]  I Kovács,et al.  A closed curve is much more than an incomplete one: effect of closure in figure-ground segmentation. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Allen R. Hanson,et al.  Perceptual completion of occluded surfaces , 1996, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[30]  D. Mumford Elastica and Computer Vision , 1994 .

[31]  Lance R. Williams,et al.  Stochastic Completion Fields: A Neural Model of Illusory Contour Shape and Salience , 1995, Neural Computation.

[32]  S Shimojo,et al.  The Theory of the Curvature-Constraint Line for Amodal Completion , 1995, Perception.

[33]  H Takeichi,et al.  The Effect of Curvature on Visual Interpolation , 1995, Perception.

[34]  Lance R. Williams,et al.  Analytic solution of stochastic completion fields , 1995, Biological Cybernetics.

[35]  Edward H. Adelson,et al.  The perception of shading and reflectance , 1996 .

[36]  I. Kovács Gestalten of today: early processing of visual contours and surfaces , 1996, Behavioural Brain Research.

[37]  T. S. Lee,et al.  Gestalten of Today: Early Processing of Visual Contours and Surfaces , 1996 .

[38]  Michael S. Landy,et al.  Influence function for visual interpolation , 1997, Electronic Imaging.

[39]  Ronen Basri,et al.  Completion energies and scale , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[40]  Rüdiger von der Heydt,et al.  Simulation of neural contour mechanisms: representing anomalous contours , 1998, Image Vis. Comput..

[41]  D D Hoffman,et al.  Completing visual contours: The relationship between relatability and minimizing inflections , 1999, Perception & psychophysics.

[42]  Peter Ulric Tse,et al.  Volume Completion , 1999, Cognitive Psychology.

[43]  P U Tse,et al.  Complete mergeability and amodal completion. , 1999, Acta psychologica.

[44]  Philip J. Kellman An update on Gestalt psychology. , 2000 .

[45]  S. Grossberg,et al.  Neural dynamics of 3-D surface perception: Figure-ground separation and lightness perception , 2000, Perception & psychophysics.

[46]  H. Quigley,et al.  Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. , 2000, Investigative ophthalmology & visual science.

[47]  Lance R. Williams,et al.  Orientation, Scale, and Discontinuity as Emergent Properties of Illusory Contour Shape , 1998, Neural Computation.

[48]  P. Kellman,et al.  From fragments to objects : segmentation and grouping in vision , 2001 .

[49]  Refractor Vision , 2000, The Lancet.

[50]  Sharon E. Guttman,et al.  7 – Geometric and Neural Models of Object Perception , 2001 .

[51]  The place of Shepard in the world of perception , 2001 .

[52]  S. Ullman,et al.  Filling-in the gaps: The shape of subjective contours and a model for their generation , 1976, Biological Cybernetics.

[53]  P. Kellman,et al.  Perception of Partly Occluded Objects and Illusory Figures : Evidence for an Identity Hypothesis , 2004 .

[54]  Lance R. Williams,et al.  Topological Reconstruction of a Smooth Manifold-Solid from Its Occluding Contour , 1994, International Journal of Computer Vision.