Retention of deuterium in damaged low-activation steel Rusfer (EK-181) after gas and plasma exposure

[1]  H. Moriyama,et al.  Hydrogen traps in ion-irradiated F82H steel observed by NRA , 2013 .

[2]  O. Ogorodnikova,et al.  Effect of radiation-induced damage on deuterium retention in tungsten, tungsten coatings and Eurofer , 2013 .

[3]  V. Voyevodin,et al.  The role of radiation damage on retention and temperature intervals of helium and hydrogen detrapping in structural materials , 2013 .

[4]  V. Chernov,et al.  Hydrogen interaction with the low activation ferritic–martensitic steel EK-181 (Rusfer) , 2013 .

[5]  J. Linke,et al.  Stainless steel performance under ITER-relevant mitigated disruption photonic heat loads , 2013 .

[6]  V. Chernov,et al.  Microstructure of EK-181 ferritic-martensitic steel after heat treatment under various conditions , 2012 .

[7]  S. Suzuki,et al.  Deuterium retention in F82H after low energy hydrogen ion irradiation , 2011 .

[8]  Mikhail A. Sokolov,et al.  Status and key issues of reduced activation ferritic/martensitic steels as the structural material for a DEMO blanket , 2011 .

[9]  A. Loarte,et al.  Preliminary results of the experimental study of PFCs exposure to ELMs-like transient loads followed by high heat flux thermal fatigue , 2011 .

[10]  A. Loarte,et al.  Experimental study of PFCs erosion and eroded material deposition under ITER-like transient loads at the plasma gun facility QSPA-T , 2011 .

[11]  S. Suzuki,et al.  Deuterium retention of ferritic steel irradiated by energetic hydrogen ions , 2009 .

[12]  U. Toussaint,et al.  Quantitative depth profiling of deuterium up to very large depths , 2009 .

[13]  B. A. Vasiliev,et al.  Structural materials for fusion power reactors—the RF R&D activities , 2007 .

[14]  N. Yoshida,et al.  Radiation damage and deuterium trapping in deuterium-ion-irradiated Fe-9Cr alloy , 2014 .