Abstraction-Based Algorithm for 2QBF

Quantified Boolean Formulas (QBFs) enable standard representation of PSPACE problems. In particular, formulas with two quantifier levels (2QBFs) enable representing problems in the second level of the polynomial hierarchy (Π2P, Σ;2P). This paper proposes an algorithm for solving 2QBF satisfiability by counterexample guided abstraction refinement (CEGAR). This represents an alternative approach to 2QBF satisfiability and, by extension, to solving decision problems in the second level of polynomial hierarchy. In addition, the paper presents a comparison of a prototype implementing the presented algorithm to state of the art QBF solvers, showing that a larger set of instances is solved.

[1]  Georg Gottlob,et al.  Propositional Circumscription and Extended Closed-World Reasoning are IIp2-Complete , 1993, Theor. Comput. Sci..

[2]  Hans Kleine Büning,et al.  Theory of Quantified Boolean Formulas , 2021, Handbook of Satisfiability.

[3]  Xinming Ou,et al.  Theorem Proving Using Lazy Proof Explication , 2003, CAV.

[4]  Luca Pulina,et al.  STRUQS: A Structural QBF Solver , 2009 .

[5]  Inês Lynce,et al.  The Seventh QBF Solvers Evaluation (QBFEVAL'10) , 2010, SAT.

[6]  Sharad Malik,et al.  A Comparative Study of 2QBF Algorithms , 2004, SAT.

[7]  Harald Ruess,et al.  Lazy Theorem Proving for Bounded Model Checking over Infinite Domains , 2002, CADE.

[8]  Helmut Veith,et al.  Counterexample-guided abstraction refinement for symbolic model checking , 2003, JACM.

[9]  Anja Remshagen,et al.  A SAT-based solver for Q-ALL SAT , 2006, ACM-SE 44.

[10]  G. S. Tseitin On the Complexity of Derivation in Propositional Calculus , 1983 .

[11]  David Monniaux,et al.  Quantifier Elimination by Lazy Model Enumeration , 2010, CAV.

[12]  Toby Walsh,et al.  Handbook of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications , 2009 .

[13]  Nachum Dershowitz,et al.  Bounded Model Checking with QBF , 2005, SAT.

[14]  Klaus Truemper,et al.  An Effective Algorithm for the Futile Questioning Problem , 2005, Journal of Automated Reasoning.

[15]  Armin Biere,et al.  A satisfiability procedure for quantified Boolean formulae , 2003, Discret. Appl. Math..

[16]  Christopher Umans The Minimum Equivalent DNF Problem and Shortest Implicants , 2001, J. Comput. Syst. Sci..

[17]  Niklas Sörensson,et al.  An Extensible SAT-solver , 2003, SAT.

[18]  Radu Grigore,et al.  Counterexample Guided Abstraction Refinement Algorithm for Propositional Circumscription , 2010, JELIA.

[19]  Mikolás Janota,et al.  How to Complete an Interactive Configuration Process? , 2010, SOFSEM.

[20]  Albert R. Meyer,et al.  The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.

[21]  Karem A. Sakallah,et al.  Computing Vertex Eccentricity in Exponentially Large Graphs: QBF Formulation and Solution , 2003, SAT.

[22]  Helmut Veith,et al.  Automated Abstraction Refinement for Model Checking Large State Spaces Using SAT Based Conflict Analysis , 2002, FMCAD.

[23]  Armando Tacchella,et al.  Clause/Term Resolution and Learning in the Evaluation of Quantified Boolean Formulas , 2006, J. Artif. Intell. Res..

[24]  Ofer Strichman,et al.  Theory and Applications of Satisfiability Testing-- Sat 2010: 13th International Conference, Sat 2010 Edinburgh, Uk, July 2010: Proceedings , 2010, SAT 2010.

[25]  David A. Plaisted,et al.  A Structure-Preserving Clause Form Translation , 1986, J. Symb. Comput..

[26]  Mikolás Janota,et al.  On Deciding MUS Membership with QBF , 2011, CP.

[27]  David L. Dill,et al.  Checking Satisfiability of First-Order Formulas by Incremental Translation to SAT , 2002, CAV.

[28]  Enrico Giunchiglia,et al.  sQueezeBF: An Effective Preprocessor for QBFs Based on Equivalence Reasoning , 2010, SAT.

[29]  Armando Tacchella,et al.  QuBE++: An Efficient QBF Solver , 2004, FMCAD.

[30]  Enrico Giunchiglia,et al.  Reasoning with Quantified Boolean Formulas , 2021, Handbook of Satisfiability.

[31]  Edmund M. Clarke SAT-Based Counterexample Guided Abstraction Refinement , 2002, SPIN.

[32]  Enrico Giunchiglia,et al.  Solving satisfiability problems with preferences , 2010, Constraints.

[33]  Edmund M. Clarke,et al.  Counterexample-guided abstraction refinement , 2003, 10th International Symposium on Temporal Representation and Reasoning, 2003 and Fourth International Conference on Temporal Logic. Proceedings..

[34]  Youssef Hamadi,et al.  Efficiently solving quantified bit-vector formulas , 2010, Formal Methods in Computer Aided Design.

[35]  Felip Manyà,et al.  MaxSAT, Hard and Soft Constraints , 2021, Handbook of Satisfiability.

[36]  Jussi Rintanen,et al.  Improvements to the Evaluation of Quantified Boolean Formulae , 1999, IJCAI.

[37]  Ofer Strichman,et al.  Theory and Applications of Satisfiability Testing – SAT 2010 , 2010, Lecture Notes in Computer Science.

[38]  Inês Lynce,et al.  Conflict-Driven Clause Learning SAT Solvers , 2009, Handbook of Satisfiability.

[39]  Theo Tryfonas,et al.  Frontiers in Artificial Intelligence and Applications , 2009 .