An efficient direct solver for a class of mixed finite element problems

In this paper we present an efficient, accurate and parallelizable direct method for the solution of the (indefinite) linear algebraic systems that arise in the solution of fourth-order partial differential equations (PDEs) using mixed finite element approximations. The method is intended particularly for use when multiple right-hand sides occur, and when high accuracy is required in these solutions. The algorithm is described in some detail and its performance is illustrated through the numerical solution of a biharmonic eigenvalue problem where the smallest eigenpair is approximated using inverse iteration after discretization via the Ciarlet–Raviart mixed finite element method.

[1]  V. V. Shaidurov,et al.  Multigrid Methods for Finite Elements , 1995 .

[2]  R. Rannacher,et al.  On the boundary value problem of the biharmonic operator on domains with angular corners , 1980 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  J. Z. Zhu,et al.  The finite element method , 1977 .

[5]  E. Davies,et al.  Lp Spectral Theory of Higher‐Order Elliptic Differential Operators , 1997 .

[6]  V. A. Kondrat'ev,et al.  Boundary problems for elliptic equations in domains with conical or angular points , 1967 .

[7]  M. R. Hanisch Multigrid preconditioning for the biharmonic Dirichlet problem , 1993 .

[8]  Jack Dongarra,et al.  ScaLAPACK Users' Guide , 1987 .

[9]  Jack Dongarra,et al.  ScaLAPACK: a scalable linear algebra library for distributed memory concurrent computers , 1992, [Proceedings 1992] The Fourth Symposium on the Frontiers of Massively Parallel Computation.

[10]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[11]  A. Wathen,et al.  Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners , 1994 .

[12]  Jianxin Zhou,et al.  Analysis of vibration eigenfrequencies of a thin plate by the Keller-Rubnow wave method I: clamped boundary conditions with rectangular or circular geometry , 1991 .

[13]  P. Gill,et al.  A Schur-complement method for sparse quadratic programming , 1987 .

[14]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[15]  W. Mitchell Review of Programming the Finite Element Method, Third Edition , 1999 .

[16]  D. Braess,et al.  On the numerical solution of the biharmonic equation and the role of squaring matrices , 1986 .

[17]  J. H. Wilkinson,et al.  Reliable Numerical Computation. , 1992 .

[18]  Lucas M. Venter,et al.  A Two-Phase Algorithm for the Chebyshev Solution of Complex Linear Equations , 1994, SIAM J. Sci. Comput..

[19]  K. Bell A refined triangular plate bending finite element , 1969 .

[20]  P. Peisker A multilevel algorithm for the biharmonic problem , 1985 .

[21]  V. Maz'ya,et al.  ON SIGN VARIATION AND THE ABSENCE OF "STRONG" ZEROS OF SOLUTIONS OF ELLIPTIC EQUATIONS , 1990 .

[22]  R. Verfürth A Multilevel Algorithm for Mixed Problems , 1984 .

[23]  Wolfgang Hackbusch,et al.  Results of the eigenvalue problem for the plate equation , 1980 .

[24]  Charles V. Coffman,et al.  On the Structure of Solutions $\Delta ^2 u = \lambda u$ Which Satisfy the Clamped Plate Conditions on a Right Angle , 1982 .

[25]  E. Davies,et al.  On the Accurate Finite Element Solution of a Class of Fourth Order Eigenvalue Problems , 1999, math/9905038.

[26]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[27]  Philippe G. Ciarlet,et al.  A Mixed Finite Element Method for the Biharmonic Equation , 1974 .

[28]  Asymptotic First Eigenvalue Estimates for the Biharmonic Operator on a Rectangle , 1997, math/9803011.

[29]  Christian Wieners A numerical existence proof of nodal lines for the first eigenfunction of the plate equation , 1996 .

[30]  I. Babuska,et al.  Analysis of mixed methods using mesh dependent norms , 1980 .

[31]  Gene H. Golub,et al.  Matrix computations , 1983 .

[32]  Jie Shen,et al.  Efficient Spectral-Galerkin Method I. Direct Solvers of Second- and Fourth-Order Equations Using Legendre Polynomials , 1994, SIAM J. Sci. Comput..

[33]  D. W. Scharpf,et al.  The TUBA Family of Plate Elements for the Matrix Displacement Method , 1968, The Aeronautical Journal (1968).

[34]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[35]  Andrew J. Wathen,et al.  Fast iterative solution of stabilised Stokes systems, part I: using simple diagonal preconditioners , 1993 .

[36]  E. Yip A Note on the Stability of Solving a Rank-p Modification of a Linear System by the Sherman–Morrison–Woodbury Formula , 1986 .

[37]  Edward L. Reiss,et al.  Block five diagonal matrices and the fast numerical solution of the biharmonic equation , 1972 .

[38]  James Demmel,et al.  An Asynchronous Parallel Supernodal Algorithm for Sparse Gaussian Elimination , 1997, SIAM J. Matrix Anal. Appl..

[39]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[40]  James Demmel,et al.  A Supernodal Approach to Sparse Partial Pivoting , 1999, SIAM J. Matrix Anal. Appl..