Local Influence in Comparative Calibration Models

In this paper, the local influence approach for detecting the effect of small perturbations of the model or data is applied in the context of comparative calibration models. Such models are typically used for comparing several measuring instruments and can be considered in a functional version as well as in a structural version as is the case with ordinary measurement error models. Different perturbation schemes are considered and some real data applications illustrate the usefulness of the approach.

[1]  Sik-Yum Lee,et al.  Sensitivity analysis of structural equation models , 1996 .

[2]  Wing K. Fung,et al.  A Note on Local Influence Based on Normal Curvature , 1997 .

[3]  Sudhir Gupta,et al.  Statistical Regression With Measurement Error , 1999, Technometrics.

[4]  Yutaka Tanaka,et al.  Influence in covariance structure analysis : with an application to confirmatory factor analysis , 1991 .

[5]  Mokhtar B. Abdullah Detection of influential observations in functional errors-in-variables model , 1995 .

[6]  Y. Hui,et al.  Influence diagnostics for generalized linear measurement error models. , 1994, Biometrics.

[7]  R. Cook Assessment of Local Influence , 1986 .

[8]  Noel G. Cadigan,et al.  Local influence in structural equation models , 1995 .

[9]  Barnett Vd Simultaneous pairwise linear structural relationships. , 1969 .

[10]  H. Bolfarine,et al.  CORRECTED SCORE FUNCTIONS IN CLASSICAL ERROR‐IN‐VARIABLES AND INCIDENTAL PARAMETER MODELS , 1997 .

[11]  S. Weisberg,et al.  Residuals and Influence in Regression , 1982 .

[12]  Xizhi Wu,et al.  Second‐Order Approach to Local Influence , 1993 .

[13]  Heleno Bolfarine,et al.  Local influence in elliptical linear regression models , 1997 .

[14]  Gilberto A. Paula,et al.  Assessing local influence in restricted regression models , 1993 .

[15]  Wing K. Fung,et al.  Assessing local influence for specific restricted likelihood: Application to factor analysis , 1998 .

[16]  H. Bolfarine,et al.  Maximum Likelihood Estimation of Simultaneous Pairwise Linear Structural Relationships , 1995 .

[17]  M. Galea-Rojas,et al.  Clinical measurement of testicular volume in adolescents: comparison of the reliability of 5 methods. , 1996, The Journal of urology.

[18]  R. Cook,et al.  Assessing influence on predictions from generalized linear models , 1990 .

[19]  E Lesaffre,et al.  Local influence in linear mixed models. , 1998, Biometrics.

[20]  Andy H. Lee,et al.  Assessing Local Influence in Measurement Error Models , 1996 .

[21]  S. Chatterjee Sensitivity analysis in linear regression , 1988 .

[22]  R. Gunst,et al.  Influence diagnostics for linear measurement error models , 1991 .

[23]  A note on the simple structural regression model , 1996 .

[24]  Theory and Methods: Influence Diagnostics for Simultaneous Equations Models , 1998 .

[25]  L. Gleser Estimation in a Multivariate "Errors in Variables" Regression Model: Large Sample Results , 1981 .

[26]  D. Kimura Functional comparative calibration using an EM algorithm , 1992 .

[27]  Gabrielle E. Kelly,et al.  The influence function in the errors in variables problem , 1981 .