Reconfigurable generation and measurement of mutually unbiased bases for time-bin qudits

We propose a method for implementing mutually unbiased generation and measurement of time-bin qudits using a cascade of electro-optic phase modulator–coded fiber Bragg grating pairs. Our approach requires only a single spatial mode and can switch rapidly between basis choices. We obtain explicit solutions for dimensions d = 2, 3, and 4 that realize all d + 1 possible mutually unbiased bases and analyze the performance of our approach in quantum key distribution. Given its practicality and compatibility with current technology, our approach provides a promising springboard for scalable processing of high-dimensional time-bin states.

[1]  K. Kitayama,et al.  High-performance optical code generation and recognition by use of a 511-chip, 640-Gchip/s phase-shifted superstructured fiber Bragg grating. , 2005, Optics letters.

[2]  M Winter,et al.  Simple all-optical FFT scheme enabling Tbit/s real-time signal processing. , 2010, Optics express.

[3]  P.C. Teh,et al.  Reconfigurable multilevel phase-shift keying encoder-decoder for all-optical networks , 2003, IEEE Photonics Technology Letters.

[4]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[5]  E.L. Wooten,et al.  A review of lithium niobate modulators for fiber-optic communications systems , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[6]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.

[7]  E. S. Gómez,et al.  Experimental quantum tomography of photonic qudits via mutually unbiased basis. , 2010, Optics express.

[8]  W. Wootters,et al.  Optimal state-determination by mutually unbiased measurements , 1989 .

[9]  K. Życzkowski,et al.  ON MUTUALLY UNBIASED BASES , 2010, 1004.3348.

[10]  Valerio Scarani,et al.  Security proof for quantum key distribution using qudit systems , 2010, 1003.5464.

[11]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[12]  Hongxi Yin,et al.  Optical Code Division Multiple Access Communication Networks , 2009 .

[13]  M J Padgett,et al.  Characterization of high-dimensional entangled systems via mutually unbiased measurements. , 2012, Physical review letters.

[14]  P. Petropoulos,et al.  A 16-Channel Reconfigurable OCDMA/DWDM System Using Continuous Phase-Shift SSFBGs , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  Minghua Chen,et al.  Code extraction from encoded signal in time-spreading optical code division multiple access. , 2010, Optics letters.

[16]  Daniel J. Gauthier,et al.  Robust and Stable Delay Interferometers with Application to d -Dimensional Time-Frequency Quantum Key Distribution , 2016, 1610.04947.

[17]  Xiang Guo,et al.  Integrated optomechanical single-photon frequency shifter , 2016, Nature Photonics.

[18]  L. You,et al.  Improving the timing jitter of a superconducting nanowire single-photon detection system. , 2017, Applied optics.

[19]  Joseph M. Lukens,et al.  Frequency-encoded photonic qubits for scalable quantum information processing , 2016, 1612.03131.

[20]  M. Ibsen,et al.  Rapidly reconfigurable optical phase encoder-decoders based on fiber Bragg gratings , 2006, IEEE Photonics Technology Letters.

[21]  Shizhong Xie,et al.  All-Optical Sampling Orthogonal Frequency-Division Multiplexing Scheme for High-Speed Transmission System , 2009, Journal of Lightwave Technology.

[22]  Daniel J. Gauthier,et al.  Security of high-dimensional quantum key distribution protocols using Franson interferometers , 2013, 1305.4541.

[23]  A. Mink,et al.  Quantum key distribution with 1.25 Gbps clock synchronization , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[24]  Shuang Wang,et al.  Proof-of-principle experimental realization of a qubit-like qudit-based quantum key distribution scheme , 2017, 1707.00387.

[25]  Ingemar Bengtsson Three Ways to Look at Mutually Unbiased Bases , 2007 .

[26]  A. W. Sharpe,et al.  Coexistence of High-Bit-Rate Quantum Key Distribution and Data on Optical Fiber , 2012, 1212.0033.

[27]  Daniel J Gauthier,et al.  Provably secure and high-rate quantum key distribution with time-bin qudits , 2017, Science Advances.

[28]  Francesca Parmigiani,et al.  26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing , 2011 .

[29]  Aephraim M. Steinberg,et al.  Improving quantum state estimation with mutually unbiased bases. , 2008, Physical review letters.