Dynamical analysis of the generalized Sprott C system with only two stable equilibria
暂无分享,去创建一个
[1] Michael Peter Kennedy,et al. Three steps to chaos. II. A Chua's circuit primer , 1993 .
[2] Hiroshi Kokubu,et al. Existence of a Singularly Degenerate Heteroclinic Cycle in the Lorenz System and Its Dynamical Consequences: Part I , 2004 .
[3] Qigui Yang,et al. Complex dynamics in the stretch-twist-fold flow , 2010 .
[4] W. Steeb,et al. The Rikitake Two-Disk Dynamo System and Domains with Periodic Orbits , 1999 .
[5] Luis Fernando Mello,et al. Degenerate Hopf bifurcations in the Lü system , 2009 .
[6] Leo R. M. Maas,et al. The diffusionless Lorenz equations; Shil'nikov bifurcations and reduction to an explicit map , 2000 .
[7] Qigui Yang,et al. Controlling the diffusionless Lorenz equations with periodic parametric perturbation , 2009, Comput. Math. Appl..
[8] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[9] L. P. Šil'nikov,et al. A CONTRIBUTION TO THE PROBLEM OF THE STRUCTURE OF AN EXTENDED NEIGHBORHOOD OF A ROUGH EQUILIBRIUM STATE OF SADDLE-FOCUS TYPE , 1970 .
[10] Diyi Chen,et al. Synchronization and circuit simulation of a new double-wing chaos , 2012 .
[11] C. P. Silva,et al. Shil'nikov's theorem-a tutorial , 1993 .
[12] Guanrong Chen,et al. YET ANOTHER CHAOTIC ATTRACTOR , 1999 .
[13] Albert C. J. Luo,et al. The dynamics of a bouncing ball with a sinusoidally vibrating table revisited , 1996 .
[14] Qigui Yang,et al. Chaotic attractors of the Conjugate Lorenz-Type System , 2007, Int. J. Bifurc. Chaos.
[15] Jianming Zhang,et al. New Treatment on Bifurcations of Periodic Solutions and Homoclinic Orbits at High r in the Lorenz Equations , 1993, SIAM J. Appl. Math..
[16] Jaume Llibre,et al. Global dynamics of the Rikitake system , 2009 .
[17] Guanrong Chen,et al. Complex Dynamical Behaviors of the Chaotic Chen's System , 2003, Int. J. Bifurc. Chaos.
[18] Julien Clinton Sprott,et al. A new class of chaotic circuit , 2000 .
[19] Zhen Wang,et al. Existence of attractor and control of a 3D differential system , 2010 .
[20] O. Rössler. An equation for continuous chaos , 1976 .
[21] Julien Clinton Sprott,et al. Simplest dissipative chaotic flow , 1997 .
[22] Luis Fernando Mello,et al. Nonlinear analysis in a Lorenz-like system , 2010 .
[23] Jaume Llibre,et al. Invariant algebraic surfaces of the Rikitake system , 2000 .
[24] Yongjian Liu,et al. A new hyperchaotic system from the Lü system and its control , 2011, J. Comput. Appl. Math..
[25] J. Sprott,et al. Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[26] Marcelo Messias,et al. Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the Lorenz system , 2009 .
[27] Qigui Yang,et al. A Chaotic System with One saddle and Two Stable Node-Foci , 2008, Int. J. Bifurc. Chaos.
[28] Jinhu Lu,et al. A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.
[29] Guanrong Chen,et al. A Unified Lorenz-Type System and its Canonical Form , 2006, Int. J. Bifurc. Chaos.
[30] Marcelo Messias,et al. Bifurcation analysis of a new Lorenz-like chaotic system , 2008 .