Oxidative coupling of methane—A complex surface/gas phase mechanism with strong impact on the reaction engineering

[1]  G. Wozny,et al.  Experimental investigation of fluidized-bed reactor performance for oxidative coupling of methane , 2012 .

[2]  R. Schomäcker,et al.  Mn–Na2WO4/SiO2 as catalyst for the oxidative coupling of methane. What is really known? , 2012 .

[3]  M. Scheffler,et al.  A Critical Assessment of Li/MgO-Based Catalysts for the Oxidative Coupling of Methane , 2011 .

[4]  O. Korup,et al.  Measurement and analysis of spatial reactor profiles in high temperature catalysis research , 2011 .

[5]  R. Schomäcker,et al.  Fluidized bed processing of sodium tungsten manganese catalysts for the oxidative coupling of methane , 2011 .

[6]  Changwei Hu,et al.  New Co−La/SiO2 Catalyst for the Simultaneous Production of C2H4 and Syngas from CH4 with Na2WO4/Mn/SiO2 , 2010 .

[7]  Rebecca Fushimi,et al.  Temporal analysis of products (TAP)—Recent advances in technology for kinetic analysis of multi-component catalysts , 2010 .

[8]  K. Takanabe,et al.  Mechanistic Aspects and Reaction Pathways for Oxidative Coupling of Methane on Mn/Na2WO4/SiO2 Catalysts , 2009 .

[9]  K. Takanabe,et al.  Rate and selectivity enhancements mediated by OH radicals in the oxidative coupling of methane catalyzed by Mn/Na2WO4/SiO2. , 2008, Angewandte Chemie.

[10]  Guy Marin,et al.  Microkinetics of methane oxidative coupling , 2008 .

[11]  Zhonglai Wang,et al.  Scale up and stability test for oxidative coupling of methane over Na2WO4-Mn/SiO2 catalyst in a 200 ml fixed-bed reactor , 2008 .

[12]  A. Dalai,et al.  Oxidative Coupling of Methane over Lithium Doped (Mn+W)/SiO2 Catalysts , 2007 .

[13]  A. Dalai,et al.  Critical Influence of Mn on Low-Temperature Catalytic Activity of Mn/Na2WO4/SiO2 Catalyst for Oxidative Coupling of Methane , 2002 .

[14]  J. Lunsford CATALYTIC CONVERSION OF METHANE TO MORE USEFUL CHEMICALS AND FUELS: A CHALLENGE FOR THE 21ST CENTURY , 2000 .

[15]  R. M. Lambert,et al.  New efficient catalysts for the oxidative coupling of methane , 2000 .

[16]  M. Baerns,et al.  Transient kinetics and mechanism of oxygen adsorption over oxide catalysts from the TAP-reactor system , 1999 .

[17]  G. Yablonskii,et al.  Moment-Based Analysis of Transient Response Catalytic Studies (TAP Experiment) , 1998 .

[18]  Yves Schuurman,et al.  TAP-2: An interrogative kinetics approach , 1997 .

[19]  V. Choudhary,et al.  Comparison of Alkali Metal Promoted MgO Catalysts for Their Surface Acidity/Basicity and Catalytic Activity/Selectivity in the Oxidative Coupling of Methane , 1997 .

[20]  J. Hoebink,et al.  An Investigation of the Oxygen Pathways in the Oxidative Coupling of Methane over MgO-Based Catalysts , 1996 .

[21]  Mark C. Bjorklund,et al.  The simulated countercurrent moving bed chromatographic reactor: a catalytic and separative reactor , 1995 .

[22]  M. Baerns,et al.  Transient studies on reaction steps in the oxidative coupling of methane over catalytic surfaces of MgO and Sm2O3 , 1994 .

[23]  G. Marin,et al.  Effect of pressure on the oxidative coupling of methane in the absence of catalyst , 1994 .

[24]  R. Aris,et al.  Enhanced C2 Yields from Methane Oxidative Coupling by Means of a Separative Chemical Reactor , 1993, Science.

[25]  G. Hutchings,et al.  Structural aspects of magnesium oxide catalysts for the oxidative coupling of methane , 1991 .

[26]  P. Nelson,et al.  Oxidation of C sub 2 hydrocarbon products during the oxidative coupling of methane over a Li/MgO catalyst , 1990 .

[27]  P. D. L. Piscina,et al.  Oxidative dimerization of methane: a surface organometallic approach to lithium doped magnesia or silica catalysts , 1989 .

[28]  J. Lunsford,et al.  Contribution of gas-phase radical coupling in the catalytic oxidation of methane , 1988 .

[29]  J. Lunsford,et al.  Gas phase coupling of methyl radicals during the catalytic partial oxidation of methane , 1987 .

[30]  J. Lunsford,et al.  Gas-phase radical formation during the reactions of methane, ethane, ethylene, and propylene over selected oxide catalysts , 1985 .

[31]  J. Lunsford,et al.  Oxidative dimerization of methane over a lithium-promoted magnesium oxide catalyst , 1985 .

[32]  E. Schlünder,et al.  Wärme‐ und Stoffübertragung zwischen durchströmten Schüttungen und darin eingebetteten Einzelkörpern , 1966 .

[33]  S. Shahri,et al.  Ce-promoted Mn/Na2WO4/SiO2 catalyst for oxidative coupling of methane at atmospheric pressure , 2010 .

[34]  R. W. Carr,et al.  A simulated countercurrent moving-bed chromatographic reactor for the oxidative coupling of methane : experimental results , 1994 .

[35]  Fang Xueping jia wan zai w-mn ti xi cui hua ji shang yang hua ou lian zhi yi xi , 1992 .

[36]  M. Baerns,et al.  Oxidative coupling of methane in the gas phase. Kinetic simulation and experimental verification , 1990 .

[37]  J. Ross,et al.  Reaction path of the oxidative coupling of methane over a lithium-doped magnesium oxide catalyst : Factors affecting the Rate of Total Oxidation of Ethane and Ethylene , 1989 .

[38]  D. A. Frank-Kamenet︠s︡kiĭ Diffusion and heat transfer in chemical kinetics , 1969 .