A q -analogue of a Ramanujan-type supercongruence involving central binomial coefficients

Abstract Motivated by Zudilin's work, we give a q-analogue of a Ramanujan-type supercongruence of van Hamme and Mortenson via the q-WZ method. Meanwhile, we give a q-analogue of a related congruence of Sun in the same way. We also propose several related conjectures on congruences involving central q-binomial coefficients.

[1]  Hao Pan,et al.  A q-Analogue of Wolstenholme's Harmonic Series Congruence , 2005, Am. Math. Mon..

[2]  B. He,et al.  Some congruences on q-Catalan numbers , 2016 .

[3]  Jonathan M. Borwein,et al.  Modular Equations and Approximations to π , 2000 .

[4]  A generalization of Morley’s congruence , 2006 .

[5]  Wadim Zudilin,et al.  Ramanujan-type supercongruences , 2008, 0805.2788.

[6]  A. Straub A $q$-analog of Ljunggren's binomial congruence , 2011, 1103.3258.

[7]  Holly Swisher,et al.  On the supercongruence conjectures of van Hamme , 2015, 1504.01028.

[8]  Ling Long,et al.  Hypergeometric evaluation identities and supercongruences , 2009, 0912.0197.

[9]  Eric T. Mortenson,et al.  A p-ADIC SUPERCONGRUENCE CONJECTURE OF VAN HAMME , 2008 .

[10]  Victor J. W. Guo,et al.  The Rodriguez-Villegas type congruences for truncated q-hypergeometric functions , 2015, 1507.03107.

[11]  Robert D. Fray Congruence properties of ordinary and $q$-binomial coefficients , 1967 .

[13]  Roberto Tauraso,et al.  q-Analogs of some congruences involving Catalan numbers , 2009, Adv. Appl. Math..

[14]  Mohamud Mohammed,et al.  The q-Markov-WZ Method , 2005 .

[15]  Jesus Guillera Some binomial series obtained by the WZ-method , 2002, Adv. Appl. Math..

[16]  Donald E. Knuth,et al.  The power of a prime that divides a generalized binomial coefficient. , 1989 .

[17]  Zhi-Wei Sun,et al.  Products and Sums Divisible by Central Binomial Coefficients , 2010, Electron. J. Comb..

[18]  Doron Zeilberger,et al.  A WZ proof of Ramanujan's Formula for Pi , 1993 .

[19]  George E. Andrews,et al.  q-analogs of the binomial coefficient congruences of Babbage, Wolstenholme and Glaisher , 1999, Discret. Math..

[20]  Jiang Zeng,et al.  Some congruences involving central q-binomial coefficients , 2009, Adv. Appl. Math..

[21]  Emil Grosswald,et al.  The Theory of Partitions , 1984 .

[22]  B. He Some congruences on conjectures of van Hamme , 2016 .

[23]  M. Schlosser BASIC HYPERGEOMETRIC SERIES , 2007 .

[24]  William Y. C. Chen,et al.  Suggested Running Title: Factors of the Gaussian Coefficients , 2022 .

[25]  Jiang Zeng,et al.  Some arithmetic properties of the q-Euler numbers and q-Salié numbers , 2006, Eur. J. Comb..

[26]  Victor J. W. Guo,et al.  Some $q$-supercongruences for truncated basic hypergeometric series , 2015 .

[27]  R. Tauraso Some $q$-analogs of congruences for central binomial sums , 2012, 1201.6152.

[28]  Jeus Guillera,et al.  Generators of some Ramanujan formulas , 2006, 1104.0392.

[29]  G. Bauer,et al.  Von den Coefficienten der Reihen von Kugelfunctionen einer Variablen. , 1859 .

[30]  Victor J. W. Guo,et al.  Some q-analogues of supercongruences of Rodriguez-Villegas , 2014, Journal of Number Theory.

[31]  W. Edwin Clark,et al.  q-Analogue of a binomial coefficient congruence , 1995 .