Thermal vibration and buckling of magneto-electro-elastic functionally graded porous nanoplates using nonlocal strain gradient elasticity

[1]  Duc Hong Doan,et al.  Finite element modeling of free vibration of cracked nanoplates with flexoelectric effects , 2022, The European Physical Journal Plus.

[2]  A. Zenkour,et al.  An electromechanical model for functionally graded porous plates attached to piezoelectric layer based on hyperbolic shear and normal deformation theory , 2021 .

[3]  R. Luciano,et al.  Trigonometric Solution for the Bending Analysis of Magneto-Electro-Elastic Strain Gradient Nonlocal Nanoplates in Hygro-Thermal Environment , 2021 .

[4]  R. Luciano,et al.  Critical Temperatures for Vibrations and Buckling of Magneto-Electro-Elastic Nonlocal Strain Gradient Plates , 2021, Nanomaterials.

[5]  A. Zenkour,et al.  Buckling analysis of actuated functionally graded piezoelectric plates via a quasi-3D refined theory , 2020 .

[6]  A. Zenkour,et al.  Static response of sandwich plates with FG core and piezoelectric faces under thermo-electro-mechanical loads and resting on elastic foundations , 2020 .

[7]  Chien H. Thai,et al.  Free vibration analysis of functionally graded anisotropic microplates using modified strain gradient theory , 2020, Engineering Analysis with Boundary Elements.

[8]  Hu Liu,et al.  Modeling of novel nanoscale mass sensor made of smart FG magneto-electro-elastic nanofilm integrated with graphene layers , 2020 .

[9]  K. K. Żur,et al.  Free vibration and buckling analyses of magneto-electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory , 2020 .

[10]  Ismail ESEN Dynamic response of functional graded Timoshenko beams in a thermal environment subjected to an accelerating load , 2019, European Journal of Mechanics - A/Solids.

[11]  T. Rabczuk,et al.  Static analysis of functionally graded anisotropic nanoplates using nonlocal strain gradient theory , 2019, Composite Structures.

[12]  A. Zenkour,et al.  Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory , 2019, Materials Research Express.

[13]  R. Luciano,et al.  Solution for cross- and angle-ply laminated Kirchhoff nano plates in bending using strain gradient theory , 2019, Composites Part B: Engineering.

[14]  H. Ovesy,et al.  Nano-Scaled Plate Free Vibration Analysis by Nonlocal Integral Elasticity Theory , 2019 .

[15]  S. A. Faghidian,et al.  Stress-driven nonlocal integral elasticity for axisymmetric nano-plates , 2019, International Journal of Engineering Science.

[16]  A. Zenkour,et al.  Hygro-thermo-electro-mechanical bending analysis of sandwich plates with FG core and piezoelectric faces , 2019, Mechanics of Advanced Materials and Structures.

[17]  Jie Yang,et al.  Nonlinear dynamic buckling of functionally graded porous beams , 2019, Mechanics of Advanced Materials and Structures.

[18]  M. C. Kiran,et al.  Assessment of porosity influence on vibration and static behaviour of functionally graded magneto-electro-elastic plate: A finite element study , 2018, European Journal of Mechanics - A/Solids.

[19]  M. Shojaeefard,et al.  Free vibration of an ultra-fast-rotating-induced cylindrical nano-shell resting on a Winkler foundation under thermo-electro-magneto-elastic condition , 2018, Applied Mathematical Modelling.

[20]  J. Reddy,et al.  Wave propagation characteristics in magneto-electro-elastic nanoshells using nonlocal strain gradient theory , 2018, Composite Structures.

[21]  S. C. Kattimani,et al.  Investigation of the effect of BaTiO 3 /CoFe 2 O 4 particle arrangement on the static response of magneto-electro-thermo-elastic plates , 2018 .

[22]  Y. Lei,et al.  Thermo-electro-mechanical vibration analysis of piezoelectric nanoplates resting on viscoelastic foundation with various boundary conditions , 2017 .

[23]  R. Ansari,et al.  Size-dependent bending, buckling and vibration of higher-order shear deformable magneto-electro-thermo-elastic rectangular nanoplates , 2017 .

[24]  L. Bessais,et al.  Semi-hard magnetic properties of nanoparticles of cobalt ferrite synthesized by the co-precipitation process , 2017 .

[25]  R. Ansari,et al.  Size-Dependent Buckling and Postbuckling Analyses of First-Order Shear Deformable Magneto-Electro-Thermo Elastic Nanoplates Based on the Nonlocal Elasticity Theory , 2017 .

[26]  R. Luciano,et al.  Functionally graded Timoshenko nanobeams: A novel nonlocal gradient formulation , 2016 .

[27]  XiaoBai Li,et al.  Free vibration analysis of nonlocal strain gradient beams made of functionally graded material , 2016 .

[28]  M. Barati,et al.  Thermo-mechanical buckling analysis of embedded nanosize FG plates in thermal environments via an inverse cotangential theory , 2016 .

[29]  A. Farajpour,et al.  Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates , 2016 .

[30]  A. Farajpour,et al.  A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment , 2016 .

[31]  Ernian Pan,et al.  Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory , 2015 .

[32]  A. Hadi,et al.  Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories , 2015 .

[33]  J. Scott,et al.  Some current problems in perovskite nano-ferroelectrics and multiferroics: kinetically-limited systems of finite lateral size , 2015, Science and technology of advanced materials.

[34]  J. Reddy,et al.  A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation , 2015 .

[35]  Nikolay I. Zheludev,et al.  A magneto-electro-optical effect in a plasmonic nanowire material , 2015, Nature Communications.

[36]  S. R. Mahmoud,et al.  On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model , 2015 .

[37]  Chen Liu,et al.  Free vibration of nonlocal piezoelectric nanoplates under various boundary conditions , 2015 .

[38]  T. Murmu,et al.  Exact closed-form solution for non-local vibration and biaxial buckling of bonded multi-nanoplate system , 2014 .

[39]  Jie Yang,et al.  Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory , 2014 .

[40]  Mohammad Rahim Nami,et al.  Resonance behavior of FG rectangular micro/nano plate based on nonlocal elasticity theory and strain gradient theory with one gradient constant , 2014 .

[41]  Y. S. Li,et al.  Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory , 2014 .

[42]  Da-Guang Zhang,et al.  Thermal post-buckling and nonlinear vibration analysis of FGM beams based on physical neutral surface and high order shear deformation theory , 2014 .

[43]  J. Reddy,et al.  Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory , 2013 .

[44]  M. Eslami,et al.  An exact solution for thermal buckling of annular FGM plates on an elastic medium , 2013 .

[45]  T. Murmu,et al.  Nonlocal vibration of bonded double-nanoplate-systems , 2011 .

[46]  Ce-Wen Nan,et al.  Multiferroic magnetoelectric composite nanostructures , 2010 .

[47]  J. N. Reddy,et al.  Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates , 2009 .

[48]  S. C. Pradhan,et al.  Nonlocal elasticity theory for vibration of nanoplates , 2009 .

[49]  Shenjie Zhou,et al.  Static and dynamic analysis of micro beams based on strain gradient elasticity theory , 2009 .

[50]  S. C. Pradhan,et al.  Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models , 2009 .

[51]  Ramamoorthy Ramesh,et al.  Multiferroics and magnetoelectrics: thin films and nanostructures , 2008 .

[52]  Shenjie Zhou,et al.  The size-dependent natural frequency of Bernoulli–Euler micro-beams , 2008 .

[53]  K. Liew,et al.  PREDICTING NANOVIBRATION OF MULTI-LAYERED GRAPHENE SHEETS EMBEDDED IN AN ELASTIC MATRIX , 2006 .

[54]  Ernian Pan,et al.  Discrete Layer Solution to Free Vibrations of Functionally Graded Magneto-Electro-Elastic Plates , 2006 .

[55]  N. Ganesan,et al.  Static analysis of simply supported functionally graded and layered magneto-electro-elastic plates , 2006 .

[56]  K. M. Liew,et al.  Continuum model for the vibration of multilayered graphene sheets , 2005 .

[57]  Keigo Suzuki,et al.  Optical Band Gap of Barium Titanate Nanoparticles Prepared by RF-plasma Chemical Vapor Deposition , 2005 .

[58]  R Ramesh,et al.  Multiferroic BaTiO3-CoFe2O4 Nanostructures , 2004, Science.

[59]  P. Tong,et al.  Couple stress based strain gradient theory for elasticity , 2002 .

[60]  Quan Wang,et al.  ON BUCKLING OF COLUMN STRUCTURES WITH A PAIR OF PIEZOELECTRIC LAYERS , 2002 .

[61]  A. Eringen On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves , 1983 .

[62]  A. Hippel Ferroelectricity, Domain Structure, and Phase Transitions of Barium Titanate , 1950 .

[63]  M. Barati A general nonlocal stress-strain gradient theory for forced vibration analysis of heterogeneous porous nanoplates , 2018 .

[64]  A. Farajpour,et al.  Influence of carbon nanotubes on the buckling of microtubule bundles in viscoelastic cytoplasm using nonlocal strain gradient theory , 2017 .

[65]  A. Zenkour,et al.  Wave propagation analysis of a functionally graded magneto-electro-elastic nanobeam rest on Visco-Pasternak foundation , 2017 .

[66]  N. Wattanasakulpong,et al.  Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities , 2014 .

[67]  Quan Wang,et al.  A Review on the Application of Nonlocal Elastic Models in Modeling of Carbon Nanotubes and Graphenes , 2012 .

[68]  Mark D. Waugh,et al.  Design solutions for DC bias in multilayer ceramic capacitors , 2010 .

[69]  A. Olabi,et al.  Design and application of magnetostrictive materials , 2008 .

[70]  M. Mehregany,et al.  MEMS/NEMS Devices and Applications , 2007 .

[71]  A. Eringen Theories of nonlocal plasticity , 1983 .

[72]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[73]  H. F. Tiersten,et al.  Effects of couple-stresses in linear elasticity , 1962 .