Well-posedness for Hall-magnetohydrodynamics

We prove local existence of smooth solutions for large data and global smooth solutions for small data to the incompressible, resitive, viscous or inviscid Hall-MHD model. We also show a Liouville theorem for the stationary solutions.

[1]  G. Galdi An Introduction to the Mathematical Theory of the Navier-Stokes Equations : Volume I: Linearised Steady Problems , 1994 .

[2]  J. L. Lions,et al.  Inéquations en thermoélasticité et magnétohydrodynamique , 1972 .

[3]  S. Balbus,et al.  Linear Analysis of the Hall Effect in Protostellar Disks , 2000, astro-ph/0010229.

[4]  M. Lighthill,et al.  Studies on Magneto-Hydrodynamic Waves and other Anisotropic wave motions , 1960, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[5]  Pierre Degond,et al.  Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system , 2011 .

[6]  L. Campos On Hydromagnetic Waves in Atmospheres with Application to the Sun , 1998 .

[7]  H. Triebel Theory Of Function Spaces , 1983 .

[8]  Jean-Yves Chemin,et al.  Perfect Incompressible Fluids , 1998 .

[9]  R. Grauer,et al.  Bifurcation analysis of magnetic reconnection in Hall-MHD-systems , 2005 .

[10]  Pablo D. Mininni,et al.  Dynamo Action in Magnetohydrodynamics and Hall-Magnetohydrodynamics , 2003 .

[11]  A. Majda,et al.  Vorticity and incompressible flow , 2001 .

[12]  X. Moussas,et al.  A review of magneto-vorticity induction in Hall-MHD plasmas , 2001 .

[13]  C. Braiding Star Formation and the Hall Effect , 2011, 1110.2168.

[14]  Michael Taylor,et al.  Tools for Pde: Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials , 2000 .

[15]  B. Perthame,et al.  Nonlinear stability of a Vlasov equation for magnetic plasmas , 2012, 1204.4613.

[16]  A. Ioffe,et al.  THE HALL EFFECT AND THE DECAY OF MAGNETIC FIELDS , 1997 .