RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia

[1]  Daniel J. Blankenberg,et al.  Using Galaxy to Perform Large‐Scale Interactive Data Analyses , 2012, Current protocols in bioinformatics.

[2]  T. Graeber,et al.  An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance. , 2011, Genes & development.

[3]  J. Licht,et al.  DNMT3A mutations in acute myeloid leukemia , 2011, Nature Genetics.

[4]  Christof Fellmann,et al.  Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi , 2011, Nature Biotechnology.

[5]  C. Rice,et al.  Suppression of inflammation by a synthetic histone mimic , 2010, Nature.

[6]  Stuart H. Orkin,et al.  A Myc Network Accounts for Similarities between Embryonic Stem and Cancer Cell Transcription Programs , 2010, Cell.

[7]  William B. Smith,et al.  Selective inhibition of BET bromodomains , 2010, Nature.

[8]  C. Allis,et al.  Covalent histone modifications — miswritten, misinterpreted and mis-erased in human cancers , 2010, Nature Reviews Cancer.

[9]  M. Cleary,et al.  The miR-17-92 microRNA polycistron regulates MLL leukemia stem cell potential by modulating p21 expression. , 2010, Cancer research.

[10]  J. Rowley,et al.  Leukaemogenesis: more than mutant genes , 2010, Nature Reviews Cancer.

[11]  Fabien Campagne,et al.  DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. , 2010, Cancer cell.

[12]  J. Soulier,et al.  Mutation in TET2 in myeloid cancers. , 2009, The New England journal of medicine.

[13]  C. Bloomfield,et al.  The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. , 2009, Blood.

[14]  J. Downing,et al.  Mouse models of human AML accurately predict chemotherapy response. , 2009, Genes & development.

[15]  Howard Y. Chang,et al.  Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells. , 2009, Cell stem cell.

[16]  M. Wunderlich,et al.  Model systems for examining effects of leukemia-associated oncogenes in primary human CD34+ cells via retroviral transduction. , 2009, Methods in molecular biology.

[17]  J. Dick,et al.  Stem cell concepts renew cancer research. , 2008, Blood.

[18]  Xiaobo Xia,et al.  H3K79 methylation profiles define murine and human MLL-AF4 leukemias. , 2008, Cancer cell.

[19]  G. Evan,et al.  Modelling Myc inhibition as a cancer therapy , 2008, Nature.

[20]  Akihiko Yokoyama,et al.  Menin critically links MLL proteins with LEDGF on cancer-associated target genes. , 2008, Cancer cell.

[21]  Yi Zheng,et al.  Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. , 2008, Cancer cell.

[22]  Christopher R. Vakoc,et al.  DOT1L/KMT4 Recruitment and H3K79 Methylation Are Ubiquitously Coupled with Gene Transcription in Mammalian Cells , 2008, Molecular and Cellular Biology.

[23]  Qiang Zhou,et al.  Brd4 Recruits P-TEFb to Chromosomes at Late Mitosis To Promote G1 Gene Expression and Cell Cycle Progression , 2007, Molecular and Cellular Biology.

[24]  Anton Nekrutenko,et al.  Using Galaxy to Perform Large‐Scale Interactive Data Analyses , 2007, Current protocols in bioinformatics.

[25]  Shwu‐Yuan Wu,et al.  The Double Bromodomain-containing Chromatin Adaptor Brd4 and Transcriptional Regulation* , 2007, Journal of Biological Chemistry.

[26]  S. Berger,et al.  In vivo dual cross-linking for identification of indirect DNA-associated proteins by chromatin immunoprecipitation. , 2006, BioTechniques.

[27]  M. Cleary,et al.  Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. , 2006, Cancer cell.

[28]  T. Golub,et al.  Transformation from committed progenitor to leukaemia stem cell initiated by MLL–AF9 , 2006, Nature.

[29]  J. Mesirov,et al.  GenePattern 2.0 , 2006, Nature Genetics.

[30]  Matthew Meyerson,et al.  The Menin Tumor Suppressor Protein Is an Essential Oncogenic Cofactor for MLL-Associated Leukemogenesis , 2005, Cell.

[31]  S. Lowe,et al.  Probing tumor phenotypes using stable and regulated synthetic microRNA precursors , 2005, Nature Genetics.

[32]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  J. Brady,et al.  The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. , 2005, Molecular cell.

[34]  Mark J. Murphy,et al.  c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. , 2004, Genes & development.

[35]  C. Felix,et al.  The molecular basis of leukemia. , 2004, Hematology. American Society of Hematology. Education Program.

[36]  Patrick J. Paddison,et al.  An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo , 2003, Nature Genetics.

[37]  J. Fletcher,et al.  BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. , 2003, Cancer research.

[38]  U. Weidle,et al.  The transcriptional program of a human B cell line in response to Myc. , 2001, Nucleic acids research.

[39]  R. Watson,et al.  Regulation of the Resident Chromosomal Copy of c-myc by c-Myb Is Involved in Myeloid Leukemogenesis , 2000, Molecular and Cellular Biology.

[40]  D. Felsher,et al.  Reversible tumorigenesis by MYC in hematopoietic lineages. , 1999, Molecular cell.

[41]  T. Hoshino,et al.  ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[42]  G Flandrin,et al.  Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. , 1985, Annals of internal medicine.

[43]  H. Gralnick,et al.  Proposals for the Classification of the Acute Leukaemias French‐American‐British (FAB) Co‐operative Group , 1976, British journal of haematology.