The Illuminating Role of Laser Scanning Digital Elevation Models in Precision Agriculture Experimental Designs - An Agro-Ecology Perspective

Jeffrey Willers, Darrin Roberts, Charles O’Hara, George Milliken, Kenneth Hood, John Walters and Edmund Schuster Genetics and Precision Agriculture Research Unit, USDA-ARS, Mississippi State, Mississippi, Department of Plant and Soil Sciences, Mississippi State University, Mississippi, Geosystems Research Institute, Mississippi State University, Spatial Information Solutions, Starkville, Mississippi, Department of Statistics, Kansas State University, Milliken Associates, Manhattan, Kansas, Perthshire Farms, Gunnison, Mississippi, InTime, Inc., Cleveland, Mississippi Aggeos, Inc., Fulton, Mississippi, Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

[1]  Hans-Peter Piepho,et al.  Statistical aspects of on-farm experimentation , 2011 .

[2]  Saiful Islam,et al.  Mahalanobis Distance , 2009, Encyclopedia of Biometrics.

[3]  Ralph B. D'Agostino,et al.  Goodness-of-Fit-Techniques , 2020 .

[4]  Jeffrey Willers,et al.  Designing experiments to evaluate the effectiveness of precision agricultural practices on research fields: part 1 concepts for their formulation , 2010, Oper. Res..

[5]  Burak Eksioglu,et al.  Original paper: A post-processing step error correction algorithm for overlapping LiDAR strips from agricultural landscapes , 2008 .

[6]  Masashi Matsuoka,et al.  Multi-scale solution for building extraction from LiDAR and image data , 2009, Int. J. Appl. Earth Obs. Geoinformation.

[7]  Michael R. Williams,et al.  UTILIZATION OF THE LINE-INTERCEPT METHOD TO ESTIMATE THE COVERAGE, DENSITY, AND AVERAGE LENGTH OF ROW SKIPS IN COTTON AND OTHER ROW CROPS , 1992 .

[8]  Dallas E. Johnson,et al.  Analysis of messy data , 1992 .

[9]  H. Maas Methods for measuring height and planimetry discrepancies in airborne laserscanner data , 2002 .

[10]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[11]  E. V. Lukina,et al.  Improving Nitrogen Use Efficiency in Cereal Grain Production with Optical Sensing and Variable Rate Application , 2002 .

[12]  S. Fleischer,et al.  Sampling in Precision IPM: When the Objective Is a Map. , 1999, Phytopathology.

[13]  Richard Campanella Testing components toward a remote-sensing-based decision support system for cotton production. , 2000 .

[14]  F. J. Pierce,et al.  Modeling Crop Yield for Site-Specific Management , 1997 .

[15]  John A. Richards,et al.  Remote Sensing Digital Image Analysis: An Introduction , 1999 .

[16]  J. A. Schell,et al.  Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. [Great Plains Corridor] , 1973 .

[17]  Viacheslav I. Adamchuk,et al.  An active sensor algorithm for corn nitrogen recommendations based on a chlorophyll meter algorithm. , 2010 .

[18]  E. J. Huising,et al.  Errors and accuracy estimates of laser data acquired by various laser scanning systems for topographic applications , 1998 .

[19]  C. Peter Keller,et al.  Map Projections: A Reference Manual , 1996 .

[20]  H. Ingensand,et al.  HOW TO EVALUATE THE QUALITY OF AIRBORNE LASER SCANNING DATA , 2004 .

[21]  C. Elvidge,et al.  Comparison of broad-band and narrow-band red and near-infrared vegetation indices , 1995 .

[22]  Charles G. OHara,et al.  INFORMATION TECHNOLOGIES AND THE DESIGN AND ANALYSIS OF SITE-SPECIFIC EXPERIMENTS WITHIN COMMERCIAL COTTON FIELDS , 2004 .

[23]  Dieter Fritsch,et al.  Filtering and calibration of laser-scanner measurements , 1994, Other Conferences.

[24]  J. Willers,et al.  Spatially variable insecticide applications for early season control of cotton insect pests , 2009 .

[25]  J. Willers,et al.  Methods of analysis for georeferenced sample counts of tarnished plant bugs in cotton , 2009, Precision Agriculture.

[26]  J. M. McKinion,et al.  APPLICATION OF COMPUTER INTENSIVE METHODS TO EVALUATE THE PERFORMANCE OF A SAMPLING DESIGN FOR USE IN COTTON INSECT PEST MANAGEMENT , 2000 .

[27]  Carol A. Gotway,et al.  Geostatistical Methods for Incorporating Auxiliary Information in the Prediction of Spatial Variables , 1996 .

[28]  B. Koch,et al.  A Lidar Point Cloud Based Procedure for Vertical Canopy Structure Analysis And 3D Single Tree Modelling in Forest , 2008, Sensors.

[29]  Ian Stewart,et al.  Taming the Infinite , 2007 .

[30]  Kiyun Yu,et al.  Parallel Processing Method for Airborne Laser Scanning Data Using a PC Cluster and a Virtual Grid , 2009, Sensors.

[31]  Manuel A. Aguilar,et al.  Modelling vertical error in LiDAR-derived digital elevation models , 2010 .

[32]  William W. Hargrove,et al.  Using multivariate clustering to characterize ecoregion borders , 1999, Comput. Sci. Eng..

[33]  F. J. Pierce,et al.  Experimental Design Issues and Statistical Evaluation Techniques for Site-Specific Management , 1997 .

[34]  George C. Derringer,et al.  The design of experiments: Statistical principles for practical applications. , 1990 .

[35]  Herbert Brewer,et al.  Mathematics for the million , 1937 .

[36]  F. J. Pierce,et al.  The state of site specific management for agriculture. , 1997 .

[37]  Michael J de Smith,et al.  Geospatial Analysis: A Comprehensive Guide to Principles, Techniques and Software Tools , 2007 .

[38]  Johnie N. Jenkins,et al.  Original paper: Comparing high density LIDAR and medium resolution GPS generated elevation data for predicting yield stability , 2010 .

[39]  Douglas L. Karlen,et al.  Spatial scale requirements for precision farming: a case study in the southeastern USA , 1998 .

[40]  Y. LindaJ. Combining Incompatible Spatial Data , 2003 .

[41]  M. S. Moran,et al.  Opportunities and limitations for image-based remote sensing in precision crop management , 1997 .

[42]  Relationships between Soil‐Based Management Zones and Canopy Sensing for Corn Nitrogen Management , 2012 .

[43]  John A. Richards,et al.  Remote Sensing Digital Image Analysis , 1986 .

[44]  J. A. Calvin Regression Models for Categorical and Limited Dependent Variables , 1998 .

[45]  Johnie N. Jenkins,et al.  A categorical, improper probability method for combining NDVI and LiDAR elevation information for potential cotton precision agricultural applications , 2012 .

[46]  M. Wolcott,et al.  Evaluation of the effects of Telone II (fumigation) on nitrogen management and yield in Louisiana delta cotton , 2010, Precision Agriculture.

[47]  Kenneth A. Sudduth,et al.  Comparison of sensors and techniques for crop yield mapping , 1996 .

[48]  Alan H. Strahler,et al.  The Use of Prior Probabilities in Maximum Likelihood Classification , 1980 .

[49]  Yuri A. Gritz,et al.  Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. , 2003, Journal of plant physiology.

[50]  Emmanuel P. Baltsavias,et al.  Airborne laser scanning: basic relations and formulas , 1999 .

[51]  P. Breeze +620. Price £65 R. Mead , 1989, Animal Behaviour.

[53]  Johnie N. Jenkins,et al.  Spatial analyses to evaluate multi-crop yield stability for a field , 2010 .

[54]  F. J. Pierce,et al.  Contemporary Statistical Models for the Plant and Soil Sciences , 2001 .

[55]  A. Dobermann,et al.  Agroecosystems, Nitrogen-use Efficiency, and Nitrogen Management , 2002, Ambio.

[56]  Lisa Jardine,et al.  The New Organon , 2008 .

[57]  James S. Schepers,et al.  Appropriateness of Management Zones for Characterizing Spatial Variability of Soil Properties and Irrigated Corn Yields across Years , 2004, Agronomy Journal.

[58]  Derek D. Lichti,et al.  Rigorous approach to bore-sight self-calibration in airborne laser scanning , 2006 .

[59]  D. L. Boykin,et al.  Site-specific Approaches to Cotton Insect Control. Sampling and Remote Sensing Analysis Techniques , 2005, Precision Agriculture.

[60]  M. A. Oliver,et al.  Geostatistical Applications for Precision Agriculture , 2010 .

[61]  Gary E. Varvel,et al.  Ability for In‐Season Correction of Nitrogen Deficiency in Corn Using Chlorophyll Meters , 1997 .

[62]  W. W. Stroup,et al.  A Generalized Linear Model Approach to Spatial Data Analysis and Prediction , 1997 .

[63]  J. R. Jensen Remote Sensing of the Environment: An Earth Resource Perspective , 2000 .

[64]  effrey Willersa,et al.  post-processing step error correction algorithm for verlapping LiDAR strips from agricultural landscapes , 2008 .

[65]  Michael R. Seal,et al.  ARTHROPOD MANAGEMENT Remote Sensing, Line-intercept Sampling for Tarnished Plant Bugs (Heteroptera: Miridae) in Mid-south Cotton , 1999 .

[66]  Richard E. Plant,et al.  Application of Remote Sensing to Strategic Questions in Cotton Management and Research , 2001 .

[67]  J. Willers,et al.  Geographical Approaches for Integrated Pest Management of Arthropods in Forestry and Row Crops , 2010 .

[68]  J. Shanahana,et al.  Responsive in-season nitrogen management for cereals Responsive in-season nitrogen management for cereals , 2008 .

[69]  A. Viña,et al.  Remote estimation of canopy chlorophyll content in crops , 2005 .

[70]  Sam Turner,et al.  Precision Farming, Myth or Reality: Selected Case Studies from Mississippi Cotton Fields , 2009 .

[71]  Reza Ehsani,et al.  Machine-to-machine communication for agricultural systems: An XML-based auxiliary language to enhance semantic interoperability , 2011 .

[72]  William R. Raun,et al.  Improving Nitrogen Use Efficiency for Cereal Production , 1999 .

[73]  G. Vosselman ON THE ESTIMATION OF PLANIMETRIC OFFSETS IN LASER ALTIMETRY DATA , 2002 .

[74]  Charles G. OHara,et al.  Defining the experimental unit for the design and analysis of site-specific experiments in commercial cotton fields , 2008 .