CD-MOF: A Versatile Separation Medium.

Porous metal-organic frameworks (MOFs) have been studied in the context of a wide variety of applications, particularly in relation to molecular storage and separation sciences. Recently, we reported a green, renewable framework material composed of γ-cyclodextrin (γ-CD) and alkali metal salts--namely, CD-MOF. This porous material has been shown to facilitate the separation of mixtures of alkylaromatic compounds, including the BTEX mixture (benzene, toluene, ethylbenzene, and the regioisomers of xylene), into their pure components, in both the liquid and gas phases, in an energy-efficient manner which could have implications for the petrochemical industry. Here, we report the ability of CD-MOF to separate a wide variety of mixtures, including ethylbenzene from styrene, haloaromatics, terpinenes, pinenes and other chiral compounds. CD-MOF retains saturated compounds to a greater extent than their unsaturated analogues. Also, the location of a double bond within a molecule influences its retention within the extended framework, as revealed in the case of the structural isomers of pinene and terpinine, where the isomers with exocyclic double bonds are more highly retained than those with endocyclic double bonds. The ability of CD-MOF to separate various mono- and disubstituted haloaromatic compounds appears to be controlled by both the size of the halogen substituents and the strength of the noncovalent bonding interactions between the analyte and the framework, an observation which has been confirmed by molecular simulations. Since CD-MOF is a homochiral framework, it is also able to resolve the enantiomers of chiral analytes, including those of limonene and 1-phenylethanol. These findings could lead to cheaper and easier-to-prepare stationary phases for HPLC separations when compared with other chiral stationary phases, such as CD-bonded silica particles.

[1]  L. Wojtas,et al.  Structural Insight into Guest Binding Sites in a Porous Homochiral Metal-Organic Material. , 2015, Journal of the American Chemical Society.

[2]  J. F. Stoddart A Platform for Change , 2015 .

[3]  J. Hupp,et al.  Selective Photooxidation of a Mustard-Gas Simulant Catalyzed by a Porphyrinic Metal-Organic Framework. , 2015, Angewandte Chemie.

[4]  J. Lercher,et al.  Tailoring p-xylene selectivity in toluene methylation on medium pore-size zeolites , 2015 .

[5]  B. Grzybowski,et al.  Tunneling Electrical Connection to the Interior of Metal-Organic Frameworks. , 2015, Journal of the American Chemical Society.

[6]  Jian‐Rong Li,et al.  Size-exclusive and coordination-induced selective dye adsorption in a nanotubular metal–organic framework , 2015 .

[7]  Xiao Feng,et al.  Chirality from substitution: enantiomer separation via a modified metal–organic framework , 2015 .

[8]  R. Krishna,et al.  Exceptional Hydrophobicity of a Large-Pore Metal-Organic Zeolite. , 2015, Journal of the American Chemical Society.

[9]  R. Krishna,et al.  Entropic separation of styrene/ethylbenzene mixtures by exploitation of subtle differences in molecular configurations in ordered crystalline nanoporous adsorbents. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[10]  Elanor Taylor An explication of emergence , 2015 .

[11]  Jeffrey A. Reimer,et al.  Cooperative insertion of CO2 in diamine-appended metal-organic frameworks , 2015, Nature.

[12]  Merry K. Smith,et al.  Preparation and Analysis of Cyclodextrin-Based Metal-Organic Frameworks: Laboratory Experiments Adaptable for High School through Advanced Undergraduate Students , 2015 .

[13]  R. Krishna Separating mixtures by exploiting molecular packing effects in microporous materials. , 2015, Physical chemistry chemical physics : PCCP.

[14]  Freek Kapteijn,et al.  Metal-organic framework nanosheets in polymer composite materials for gas separation , 2014, Nature materials.

[15]  P. Beer,et al.  Halogen Bonding in Supramolecular Chemistry. , 2008, Chemical reviews.

[16]  Wei Zhou,et al.  Porous Metal-Organic Frameworks for Gas Storage and Separation: What, How, and Why? , 2014, The journal of physical chemistry letters.

[17]  A. Rodrigues,et al.  Light olefins/paraffins separation with 13X zeolite binderless beads , 2014 .

[18]  Julie B. Manley,et al.  Implementing Green Chemistry in Chemical Manufacturing: A Survey Report , 2014 .

[19]  Irving R. Epstein,et al.  Coupled chemical oscillators and emergent system properties. , 2014, Chemical communications.

[20]  F. Mavelli,et al.  Emergent properties arising from the assembly of amphiphiles. Artificial vesicle membranes as reaction promoters and regulators. , 2014, Chemical communications.

[21]  Kenichi Kato,et al.  Hydrogen storage in Pd nanocrystals covered with a metal-organic framework. , 2014, Nature materials.

[22]  S. Qiu,et al.  Metal-organic framework membranes: from synthesis to separation application. , 2014, Chemical Society reviews.

[23]  Li Zhang,et al.  Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. , 2014, Chemical Society reviews.

[24]  M. P. Suh,et al.  Hydrogen storage in a potassium-ion-bound metal-organic framework incorporating crown ether struts as specific cation binding sites. , 2014, Angewandte Chemie.

[25]  J. F. Stoddart,et al.  A metal-organic framework-based material for electrochemical sensing of carbon dioxide. , 2014, Journal of the American Chemical Society.

[26]  H. Furukawa,et al.  High Methane Storage Capacity in Aluminum Metal–Organic Frameworks , 2014, Journal of the American Chemical Society.

[27]  Randall Q. Snurr,et al.  High-Throughput Screening of Porous Crystalline Materials for Hydrogen Storage Capacity near Room Temperature , 2014 .

[28]  Xiao-Jun Lv,et al.  High gas storage capacities and stepwise adsorption in a UiO type metal-organic framework incorporating Lewis basic bipyridyl sites. , 2014, Chemical communications.

[29]  Randall Q. Snurr,et al.  Screening of bio-compatible metal-organic frameworks as potential drug carriers using Monte Carlo simulations. , 2014, Journal of materials chemistry. B.

[30]  Yong Cui,et al.  A homochiral metal-organic framework as an effective asymmetric catalyst for cyanohydrin synthesis. , 2014, Journal of the American Chemical Society.

[31]  J. Long,et al.  Hydrocarbon Separations in Metal–Organic Frameworks , 2014 .

[32]  B. Grzybowski,et al.  A metal-organic framework stabilizes an occluded photocatalyst. , 2013, Chemistry.

[33]  David Fairen-Jimenez,et al.  Vapor-phase metalation by atomic layer deposition in a metal-organic framework. , 2013, Journal of the American Chemical Society.

[34]  Rajamani Krishna,et al.  Separation of Hexane Isomers in a Metal-Organic Framework with Triangular Channels , 2013, Science.

[35]  Ziyang Pu,et al.  Chiral recognition of a 3D chiral nanoporous metal-organic framework. , 2013, Chemical communications.

[36]  J. F. Stoddart,et al.  Direct calorimetric measurement of enthalpy of adsorption of carbon dioxide on CD-MOF-2, a green metal-organic framework. , 2013, Journal of the American Chemical Society.

[37]  Y. S. Lin,et al.  Gas Separation Properties of Metal Organic Framework (MOF-5) Membranes , 2013 .

[38]  Timothy R. Cook,et al.  Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. , 2013, Chemical reviews.

[39]  J. F. Stoddart,et al.  Editorial: From supramolecular to systems chemistry: complexity emerging out of simplicity. , 2012, Angewandte Chemie.

[40]  D. Vos,et al.  Vapor-Phase Adsorption and Separation of Ethylbenzene and Styrene on the Metal–Organic Frameworks MIL-47 and MIL-53(Al) , 2012 .

[41]  L. Cronin,et al.  Engineering polyoxometalates with emergent properties. , 2012, Chemical Society reviews.

[42]  K. Sada,et al.  Nano- and microsized cubic gel particles from cyclodextrin metal-organic frameworks. , 2012, Angewandte Chemie.

[43]  Yasuhiro Ikezoe,et al.  New Autonomous Motors of Metal-Organic Framework (MOF) Powered by Reorganization of Self-Assembled Peptides at interfaces , 2012, Nature materials.

[44]  P. Moghadam,et al.  Origin of Enantioselectivity in a Chiral Metal–Organic Framework: A Molecular Simulation Study , 2012 .

[45]  Hong-Cai Zhou,et al.  Recent advances in carbon dioxide capture with metal‐organic frameworks , 2012 .

[46]  Bartosz A Grzybowski,et al.  Nanoparticle core/shell architectures within MOF crystals synthesized by reaction diffusion. , 2012, Angewandte Chemie.

[47]  D. Vos,et al.  Liquid-Phase Adsorption and Separation of Xylene Isomers by the Flexible Porous Metal–Organic Framework MIL-53(Fe) , 2012 .

[48]  W. Jin,et al.  A homochiral metal-organic framework membrane for enantioselective separation. , 2012, Chemical communications.

[49]  Kimoon Kim,et al.  Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. , 2012, Chemical reviews.

[50]  Ronald A. Smaldone,et al.  Nanoporous carbohydrate metal-organic frameworks. , 2012, Journal of the American Chemical Society.

[51]  Xiu‐Ping Yan,et al.  High-performance liquid chromatographic separation of position isomers using metal-organic framework MIL-53(Al) as the stationary phase. , 2012, The Analyst.

[52]  F. Glorius,et al.  Application of a chiral metal-organic framework in enantioselective separation. , 2011, Chemical communications.

[53]  Jeremiah J Gassensmith,et al.  Strong and reversible binding of carbon dioxide in a green metal-organic framework. , 2011, Journal of the American Chemical Society.

[54]  Xiu‐Ping Yan,et al.  Metal-organic framework MIL-101(Cr) for high-performance liquid chromatographic separation of substituted aromatics. , 2011, Analytical chemistry.

[55]  Q. Vicens,et al.  Emergences of supramolecular chemistry: from supramolecular chemistry to supramolecular science , 2011 .

[56]  M. A. Moreira,et al.  Influence of the Eluent in the MIL-53(Al) Selectivity for Xylene Isomers Separation , 2011 .

[57]  C. Serre,et al.  Reverse shape selectivity in the adsorption of hexane and xylene isomers in MOF UiO-66 , 2011 .

[58]  K. Thomas,et al.  Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene. , 2011, Nature communications.

[59]  B. Gibb The emergence of emergence. , 2011, Nature chemistry.

[60]  Christopher W. Jones,et al.  A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. , 2010, Angewandte Chemie.

[61]  Ronald A. Smaldone,et al.  Metal-organic frameworks from edible natural products. , 2010, Angewandte Chemie.

[62]  S. Nguyen,et al.  De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. , 2010, Nature chemistry.

[63]  D. D. De Vos,et al.  Separation of styrene and ethylbenzene on metal-organic frameworks: analogous structures with different adsorption mechanisms. , 2010, Journal of the American Chemical Society.

[64]  Wenbin Lin,et al.  A series of isoreticular chiral metal-organic frameworks as a tunable platform for asymmetric catalysis. , 2010, Nature chemistry.

[65]  Gérard Férey,et al.  BioMOFs: metal-organic frameworks for biological and medical applications. , 2010, Angewandte Chemie.

[66]  Paul Anastas,et al.  Green chemistry: principles and practice. , 2010, Chemical Society reviews.

[67]  Shuguang Deng,et al.  Adsorption of CO(2), CH(4), N(2)O, and N(2) on MOF-5, MOF-177, and zeolite 5A. , 2010, Environmental science & technology.

[68]  B. Abrahams,et al.  A simple lithium(I) salt with a microporous structure and its gas sorption properties. , 2010, Angewandte Chemie.

[69]  Xiu‐Ping Yan,et al.  Adsorption and Separation of Xylene Isomers and Ethylbenzene on Two Zn−Terephthalate Metal−Organic Frameworks , 2010 .

[70]  Bo Wang,et al.  Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites , 2009, Proceedings of the National Academy of Sciences.

[71]  I. Epstein,et al.  Emergent or Just Complex? , 2009, Science.

[72]  A. Matzger,et al.  Microporous coordination polymers as selective sorbents for liquid chromatography. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[73]  D. D. De Vos,et al.  Framework breathing in the vapour-phase adsorption and separation of xylene isomers with the metal-organic framework MIL-53. , 2009, Chemistry.

[74]  Gérard Férey,et al.  A new photoactive crystalline highly porous titanium(IV) dicarboxylate. , 2009, Journal of the American Chemical Society.

[75]  B. Gibb Reaching out to complexity. , 2009, Nature Chemistry.

[76]  C. Serre,et al.  Colloidal Route for Preparing Optical Thin Films of Nanoporous Metal–Organic Frameworks , 2009 .

[77]  W. Vermeiren,et al.  Impact of Zeolites on the Petroleum and Petrochemical Industry , 2009 .

[78]  Michael J Zaworotko,et al.  Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks. , 2009, Chemical Society reviews.

[79]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[80]  Ulrich Müller,et al.  Industrial applications of metal-organic frameworks. , 2009, Chemical Society reviews.

[81]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[82]  Michael O'Keeffe,et al.  Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[83]  Keiji Nakagawa,et al.  Heterogeneously hybridized porous coordination polymer crystals: fabrication of heterometallic core-shell single crystals with an in-plane rotational epitaxial relationship. , 2009, Angewandte Chemie.

[84]  Carlo Lamberti,et al.  A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. , 2008, Journal of the American Chemical Society.

[85]  P. Wheatley,et al.  Gas storage in nanoporous materials. , 2008, Angewandte Chemie.

[86]  H. Verelst,et al.  Pore-filling-dependent selectivity effects in the vapor-phase separation of xylene isomers on the metal-organic framework MIL-47. , 2008, Journal of the American Chemical Society.

[87]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[88]  K. Uneyama Organofluorine Chemistry: Kenji/Organofluorine , 2007 .

[89]  Omar M Yaghi,et al.  Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). , 2007, Journal of the American Chemical Society.

[90]  M. A. van der Veen,et al.  Selective adsorption and separation of xylene isomers and ethylbenzene with the microporous vanadium(IV) terephthalate MIL-47. , 2007, Angewandte Chemie.

[91]  Wenbin Lin,et al.  Heterogeneous asymmetric catalysis with homochiral metal-organic frameworks: network-structure-dependent catalytic activity. , 2007, Angewandte Chemie.

[92]  Chengdu Liang,et al.  A microporous metal-organic framework for gas-chromatographic separation of alkanes. , 2006, Angewandte Chemie.

[93]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[94]  C. Serre,et al.  MIL-103, a 3-D lanthanide-based metal organic framework with large one-dimensional tunnels and a high surface area. , 2005, Journal of the American Chemical Society.

[95]  Chuan-De Wu,et al.  A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis. , 2005, Journal of the American Chemical Society.

[96]  Pierangelo Metrangolo,et al.  Halogen bonding based recognition processes: a world parallel to hydrogen bonding. , 2005, Accounts of chemical research.

[97]  R. J. Schmidt,et al.  Industrial catalytic processes: phenol production , 2005 .

[98]  E. D. Valle,et al.  Cyclodextrins and their uses: a review , 2004 .

[99]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[100]  Y. S. Lin,et al.  Molecular sieving MFI-type zeolite membranes for pervaporation separation of xylene isomers. , 2004, Journal of the American Chemical Society.

[101]  B. Abrahams,et al.  Serendipity and design in the generation of new coordination polymers: an extensive series of highly symmetrical guanidinium-templated, carbonate-based networks with the sodalite topology. , 2004, Journal of the American Chemical Society.

[102]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[103]  Michael O'Keeffe,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[104]  O. Terasaki,et al.  Microstructural Optimization of a Zeolite Membrane for Organic Vapor Separation , 2003, Science.

[105]  Paul T Anastas,et al.  Green chemistry: science and politics of change. , 2002, Science.

[106]  Jordi Rius,et al.  A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst , 2002, Nature.

[107]  James H. Clark,et al.  Solid acids for green chemistry. , 2002, Accounts of chemical research.

[108]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[109]  Roger A. Sheldon,et al.  Heterogeneous catalytic transformations for environmentally friendly production , 1999 .

[110]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[111]  T. Groy,et al.  Design and synthesis of metal-carboxylate frameworks with permanent microporosity , 1999 .

[112]  Tseng-Chang Tsai,et al.  Disproportionation and transalkylation of alkylbenzenes over zeolite catalysts , 1999 .

[113]  J D Sherman,et al.  Synthetic zeolites and other microporous oxide molecular sieves. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[114]  James H. Clark,et al.  Green chemistry: challenges and opportunities , 1999 .

[115]  G. Desiraju,et al.  C−H···F Interactions in the Crystal Structures of Some Fluorobenzenes , 1998 .

[116]  R. Robson,et al.  An Infinite 2D Polyrotaxane Network in Ag2(bix)3(NO3)2 (bix = 1,4-Bis(imidazol-1-ylmethyl)benzene) , 1997 .

[117]  Fabrizio Cavani,et al.  Alternative processes for the production of styrene , 1995 .

[118]  M. Zaworotko,et al.  POROUS SOLIDS BY DESIGN : ZN(4,4'-BPY)2(SIF6)N.XDMF, A SINGLE FRAMEWORK OCTAHEDRAL COORDINATION POLYMER WITH LARGE SQUARE CHANNELS , 1995 .

[119]  O. Yaghi,et al.  Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels , 1995 .

[120]  B. Abrahams,et al.  Assembly of porphyrin building blocks into network structures with large channels , 1994, Nature.

[121]  R. E. Rosensweig,et al.  Binary and ternary equilibria for C8 aromatics on K-Y faujasite , 1991 .

[122]  R. Robson,et al.  Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and Cu , 1990 .

[123]  H. Harry Szmant,et al.  Organic Building Blocks of the Chemical Industry , 1989 .

[124]  A. Corma,et al.  Isomerization and disproportionation of m-xylene : Selectivities Induced by the Void Structure of the Zeolite Framework , 1988 .

[125]  D. Ruthven,et al.  Sorption and diffusion of C8 aromatic hydrocarbons in faujasite type zeolites. I. Equilibrium isotherms and separation factors , 1986 .

[126]  D. Ruthven,et al.  Sorption and diffusion of C8 aromatic hydrocarbons in faujasite type zeolites. II: Sorption kinetics and intracrystalline diffusivities , 1986 .

[127]  J. Smith,et al.  Silicalite, a new hydrophobic crystalline silica molecular sieve , 1978, Nature.