Analysis of the African coelacanth genome sheds light on tetrapod evolution

The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.

Sonja J. Prohaska | Bronwen L. Aken | J. Levin | Lin Fan | E. Mauceli | A. Gnirke | F. Di Palma | K. Lindblad-Toh | E. Lander | S. Searle | C. Amemiya | C. Ponting | Ted Sharpe | D. Tabbaa | Louise Williams | Iain Maccallum | D. Jaffe | J. Postlethwait | P. Stadler | A. Meyer | D. Chalopin | J. Volff | M. Schartl | B. Venkatesh | C. Tabin | S. Gnerre | Dariusz Przybylski | M. Yandell | S. White | A. Christoffels | W. Haerty | Filipe J. Ribeiro | A. Berlin | Hakim Tafer | M. Lara | N. Shubin | H. Philippe | T. Ota | Jessica Alföldi | Jason Turner-Maier | H. Brinkmann | D. Nelson | O. Simakov | Alison P. Lee | S. Fan | I. Braasch | T. Manousaki | I. Schneider | Nicolas Rohner | C. Organ | J. Smith | Mark Robinson | R. Dorrington | M. Gerdol | M. A. Biscotti | M. Barucca | D. Baurain | G. Blatch | F. Buonocore | T. Burmester | Michael Campbell | A. Canapa | J. Cannon | G. De Moro | A. Edkins | A. Fausto | Nathalie Feiner | Marikò Forconi | J. Gamieldien | J. Goldstone | M. E. Hahn | U. Hesse | S. Hoffmann | Jeremy Johnson | S. Karchner | S. Kuraku | G. Litman | T. Miyake | M. Mueller | Anne Nitsche | E. Olmo | A. Pallavicini | Sumir Panji | Barbara Picone | N. Saha | V. Ravi | T. Sauka-Spengler | G. Scapigliati | J. Stegeman | K. Sumiyama | P. van Heusden | F. Palma | J. J. Smith | P. Heusden | G. Moro | Jeremy Johnson | Shigehiro Kuraku | Shaohua Fan | Chris P. Ponting | Chris T. Amemiya | Jeramiah J. Smith | Rosemary A. Dorrington | Gregory L. Blatch | Michael S. Campbell | Adrienne L. Edkins | Joshua Z. Levin | M. Gail Mueller | David R. Nelson | Peter F. Stadler | Clifford J. Tabin | David B Jaffe | Eric S. Lander | C. P. Ponting | Iain MacCallum | E. Lander | Adrienne L. Edkins | David B. Jaffe | Igor Schneider

[1]  J. L. B. Smith A Living Fish of Mesozoic Type , 1939, Nature.

[2]  J. L. B. Smith Old fourlegs : the story of the coelacanth , 1956 .

[3]  Robert L. Carroll,et al.  Vertebrate Paleontology and Evolution , 1988 .

[4]  M. Benton Origins of the higher groups of tetrapods: controversy and consensus , 1991 .

[5]  F. Tajima,et al.  Simple methods for testing the molecular evolutionary clock hypothesis. , 1993, Genetics.

[6]  The chromosomes of the living coelacanth and their remarkable similarity to those of one of the most ancient frogs. , 1994, The Journal of heredity.

[7]  P. Wright Nitrogen excretion: three end products, many physiological roles. , 1995, The Journal of experimental biology.

[8]  A Rzhetsky,et al.  Phylogenetic test of the molecular clock and linearized trees. , 1995, Molecular biology and evolution.

[9]  A. Meyer,et al.  The complete DNA sequence of the mitochondrial genome of a "living fossil," the coelacanth (Latimeria chalumnae). , 1997, Genetics.

[10]  R. Nieuwenhuys The Coelacanth Latimeria chalumnae , 1998 .

[11]  R. Caldwell,et al.  Indonesian ‘king of the sea’ discovered , 1998, Nature.

[12]  Carl Zimmer At the Water's Edge: Fish with Fingers, Whales with Legs, and How Life Came Ashore but Then Went Back to Sea , 1998 .

[13]  D. Hillis,et al.  Two living species of coelacanths? , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[14]  G. Warr,et al.  Immunoglobulin isotypes: structure, function, and genetics. , 2000, Current topics in microbiology and immunology.

[15]  C. Amemiya,et al.  Lineage-restricted retention of a primitive immunoglobulin heavy chain isotype within the Dipnoi reveals an evolutionary paradox , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[16]  D. Haussler,et al.  Ultraconserved Elements in the Human Genome , 2004, Science.

[17]  C. Amemiya,et al.  Coelacanth genome sequence reveals the evolutionary history of vertebrate genes. , 2004, Genome research.

[18]  A. Meyer,et al.  Molecules, fossils, and the origin of tetrapods , 1992, Journal of Molecular Evolution.

[19]  S. Brenner,et al.  Nuclear protein-coding genes support lungfish and not the coelacanth as the closest living relatives of land vertebrates. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Thomas Ludwig,et al.  A fast program for maximum likelihood-based inference of large phylogenetic trees , 2004, SAC '04.

[21]  H. Philippe,et al.  A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. , 2004, Molecular biology and evolution.

[22]  Jean L. Chang,et al.  Initial sequence of the chimpanzee genome and comparison with the human genome , 2005, Nature.

[23]  B. Venkatesh,et al.  The mitochondrial genome of Indonesian coelacanth Latimeria menadoensis (Sarcopterygii: Coelacanthiformes) and divergence time estimation between the two coelacanths. , 2005, Gene.

[24]  Thomas Ludwig,et al.  RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees , 2005, Bioinform..

[25]  R. Gregory The evolution of the genome , 2005 .

[26]  D. Haussler,et al.  A distal enhancer and an ultraconserved exon are derived from a novel retroposon , 2006, Nature.

[27]  S. Voss,et al.  Gene order data from a model amphibian (Ambystoma): new perspectives on vertebrate genome structure and evolution , 2006, BMC Genomics.

[28]  T. Mikkelsen,et al.  Systematic discovery of regulatory motifs in conserved regions of the human genome, including thousands of CTCF insulator sites , 2007, Proceedings of the National Academy of Sciences.

[29]  D. Larhammar,et al.  Cloning and sequence analysis of the neuropeptide Y receptors Y5 and Y6 in the coelacanth Latimeria chalumnae. , 2007, General and comparative endocrinology.

[30]  D. Wellik Hox patterning of the vertebrate axial skeleton , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[31]  Sofia M. C. Robb,et al.  MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. , 2007, Genome research.

[32]  Boris Lenhard,et al.  Systematic human/zebrafish comparative identification of cis-regulatory activity around vertebrate developmental transcription factor genes. , 2009, Developmental biology.

[33]  S. Carroll,et al.  Deep homology and the origins of evolutionary novelty , 2009, Nature.

[34]  A. Amores,et al.  Evolution of developmental regulation in the vertebrate FgfD subfamily. , 2010, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[35]  A. Gnirke,et al.  High-quality draft assemblies of mammalian genomes from massively parallel sequence data , 2010, Proceedings of the National Academy of Sciences.

[36]  L. Sánchez-Pulido,et al.  Loss of fish actinotrichia proteins and the fin-to-limb transition , 2010, Nature.

[37]  Sonja J. Prohaska,et al.  Complete HOX cluster characterization of the coelacanth provides further evidence for slow evolution of its genome , 2010, Proceedings of the National Academy of Sciences.

[38]  M. Ueno,et al.  Hematopoietic stem cell development in the placenta. , 2010, The International journal of developmental biology.

[39]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[40]  S. Voss,et al.  Origin of amphibian and avian chromosomes by fission, fusion, and retention of ancestral chromosomes. , 2011, Genome research.

[41]  J. Postlethwait,et al.  The teleost agouti-related protein 2 gene is an ohnolog gone missing from the tetrapod genome , 2011, Proceedings of the National Academy of Sciences.

[42]  M. Herbin,et al.  An updated inventory of all known specimens of the coelacanth, Latimeria spp. , 2011 .

[43]  O. Lichtarge,et al.  Molecular defects in human carbamoy phosphate synthetase I: mutational spectrum, diagnostic and protein structure considerations , 2011, Human mutation.

[44]  Sergei L. Kosakovsky Pond,et al.  A random effects branch-site model for detecting episodic diversifying selection. , 2011, Molecular biology and evolution.

[45]  Wouter de Laat,et al.  A Regulatory Archipelago Controls Hox Genes Transcription in Digits , 2011, Cell.

[46]  Xiaobo Yu,et al.  Earliest known coelacanth skull extends the range of anatomically modern coelacanths to the Early Devonian , 2012, Nature Communications.

[47]  Alex A. Pollen,et al.  The genomic basis of adaptive evolution in threespine sticklebacks , 2012, Nature.

[48]  C. Amemiya,et al.  A living fossil in the genome of a living fossil: Harbinger transposons in the coelacanth genome. , 2012, Molecular biology and evolution.

[49]  M. A. Biscotti,et al.  Composition and phylogenetic analysis of vitellogenin coding sequences in the Indonesian coelacanth Latimeria menadoensis. , 2012, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[50]  M. Kmita,et al.  Recruitment of 5′ Hoxa genes in the allantois is essential for proper extra-embryonic function in placental mammals , 2012, Development.

[51]  F. Di Palma,et al.  Analysis of the transcriptome of the Indonesian coelacanth Latimeria menadoensis , 2013, BMC Genomics.