Analysis of the African coelacanth genome sheds light on tetrapod evolution
暂无分享,去创建一个
Sonja J. Prohaska | Bronwen L. Aken | J. Levin | Lin Fan | E. Mauceli | A. Gnirke | F. Di Palma | K. Lindblad-Toh | E. Lander | S. Searle | C. Amemiya | C. Ponting | Ted Sharpe | D. Tabbaa | Louise Williams | Iain Maccallum | D. Jaffe | J. Postlethwait | P. Stadler | A. Meyer | D. Chalopin | J. Volff | M. Schartl | B. Venkatesh | C. Tabin | S. Gnerre | Dariusz Przybylski | M. Yandell | S. White | A. Christoffels | W. Haerty | Filipe J. Ribeiro | A. Berlin | Hakim Tafer | M. Lara | N. Shubin | H. Philippe | T. Ota | Jessica Alföldi | Jason Turner-Maier | H. Brinkmann | D. Nelson | O. Simakov | Alison P. Lee | S. Fan | I. Braasch | T. Manousaki | I. Schneider | Nicolas Rohner | C. Organ | J. Smith | Mark Robinson | R. Dorrington | M. Gerdol | M. A. Biscotti | M. Barucca | D. Baurain | G. Blatch | F. Buonocore | T. Burmester | Michael Campbell | A. Canapa | J. Cannon | G. De Moro | A. Edkins | A. Fausto | Nathalie Feiner | Marikò Forconi | J. Gamieldien | J. Goldstone | M. E. Hahn | U. Hesse | S. Hoffmann | Jeremy Johnson | S. Karchner | S. Kuraku | G. Litman | T. Miyake | M. Mueller | Anne Nitsche | E. Olmo | A. Pallavicini | Sumir Panji | Barbara Picone | N. Saha | V. Ravi | T. Sauka-Spengler | G. Scapigliati | J. Stegeman | K. Sumiyama | P. van Heusden | F. Palma | J. J. Smith | P. Heusden | G. Moro | Jeremy Johnson | Shigehiro Kuraku | Shaohua Fan | Chris P. Ponting | Chris T. Amemiya | Jeramiah J. Smith | Rosemary A. Dorrington | Gregory L. Blatch | Michael S. Campbell | Adrienne L. Edkins | Joshua Z. Levin | M. Gail Mueller | David R. Nelson | Peter F. Stadler | Clifford J. Tabin | David B Jaffe | Eric S. Lander | C. P. Ponting | Iain MacCallum | E. Lander | Adrienne L. Edkins | David B. Jaffe | Igor Schneider
[1] J. L. B. Smith. A Living Fish of Mesozoic Type , 1939, Nature.
[2] J. L. B. Smith. Old fourlegs : the story of the coelacanth , 1956 .
[3] Robert L. Carroll,et al. Vertebrate Paleontology and Evolution , 1988 .
[4] M. Benton. Origins of the higher groups of tetrapods: controversy and consensus , 1991 .
[5] F. Tajima,et al. Simple methods for testing the molecular evolutionary clock hypothesis. , 1993, Genetics.
[6] The chromosomes of the living coelacanth and their remarkable similarity to those of one of the most ancient frogs. , 1994, The Journal of heredity.
[7] P. Wright. Nitrogen excretion: three end products, many physiological roles. , 1995, The Journal of experimental biology.
[8] A Rzhetsky,et al. Phylogenetic test of the molecular clock and linearized trees. , 1995, Molecular biology and evolution.
[9] A. Meyer,et al. The complete DNA sequence of the mitochondrial genome of a "living fossil," the coelacanth (Latimeria chalumnae). , 1997, Genetics.
[10] R. Nieuwenhuys. The Coelacanth Latimeria chalumnae , 1998 .
[11] R. Caldwell,et al. Indonesian ‘king of the sea’ discovered , 1998, Nature.
[12] Carl Zimmer. At the Water's Edge: Fish with Fingers, Whales with Legs, and How Life Came Ashore but Then Went Back to Sea , 1998 .
[13] D. Hillis,et al. Two living species of coelacanths? , 1999, Proceedings of the National Academy of Sciences of the United States of America.
[14] G. Warr,et al. Immunoglobulin isotypes: structure, function, and genetics. , 2000, Current topics in microbiology and immunology.
[15] C. Amemiya,et al. Lineage-restricted retention of a primitive immunoglobulin heavy chain isotype within the Dipnoi reveals an evolutionary paradox , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[16] D. Haussler,et al. Ultraconserved Elements in the Human Genome , 2004, Science.
[17] C. Amemiya,et al. Coelacanth genome sequence reveals the evolutionary history of vertebrate genes. , 2004, Genome research.
[18] A. Meyer,et al. Molecules, fossils, and the origin of tetrapods , 1992, Journal of Molecular Evolution.
[19] S. Brenner,et al. Nuclear protein-coding genes support lungfish and not the coelacanth as the closest living relatives of land vertebrates. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[20] Thomas Ludwig,et al. A fast program for maximum likelihood-based inference of large phylogenetic trees , 2004, SAC '04.
[21] H. Philippe,et al. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. , 2004, Molecular biology and evolution.
[22] Jean L. Chang,et al. Initial sequence of the chimpanzee genome and comparison with the human genome , 2005, Nature.
[23] B. Venkatesh,et al. The mitochondrial genome of Indonesian coelacanth Latimeria menadoensis (Sarcopterygii: Coelacanthiformes) and divergence time estimation between the two coelacanths. , 2005, Gene.
[24] Thomas Ludwig,et al. RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees , 2005, Bioinform..
[25] R. Gregory. The evolution of the genome , 2005 .
[26] D. Haussler,et al. A distal enhancer and an ultraconserved exon are derived from a novel retroposon , 2006, Nature.
[27] S. Voss,et al. Gene order data from a model amphibian (Ambystoma): new perspectives on vertebrate genome structure and evolution , 2006, BMC Genomics.
[28] T. Mikkelsen,et al. Systematic discovery of regulatory motifs in conserved regions of the human genome, including thousands of CTCF insulator sites , 2007, Proceedings of the National Academy of Sciences.
[29] D. Larhammar,et al. Cloning and sequence analysis of the neuropeptide Y receptors Y5 and Y6 in the coelacanth Latimeria chalumnae. , 2007, General and comparative endocrinology.
[30] D. Wellik. Hox patterning of the vertebrate axial skeleton , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.
[31] Sofia M. C. Robb,et al. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. , 2007, Genome research.
[32] Boris Lenhard,et al. Systematic human/zebrafish comparative identification of cis-regulatory activity around vertebrate developmental transcription factor genes. , 2009, Developmental biology.
[33] S. Carroll,et al. Deep homology and the origins of evolutionary novelty , 2009, Nature.
[34] A. Amores,et al. Evolution of developmental regulation in the vertebrate FgfD subfamily. , 2010, Journal of experimental zoology. Part B, Molecular and developmental evolution.
[35] A. Gnirke,et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data , 2010, Proceedings of the National Academy of Sciences.
[36] L. Sánchez-Pulido,et al. Loss of fish actinotrichia proteins and the fin-to-limb transition , 2010, Nature.
[37] Sonja J. Prohaska,et al. Complete HOX cluster characterization of the coelacanth provides further evidence for slow evolution of its genome , 2010, Proceedings of the National Academy of Sciences.
[38] M. Ueno,et al. Hematopoietic stem cell development in the placenta. , 2010, The International journal of developmental biology.
[39] N. Friedman,et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.
[40] S. Voss,et al. Origin of amphibian and avian chromosomes by fission, fusion, and retention of ancestral chromosomes. , 2011, Genome research.
[41] J. Postlethwait,et al. The teleost agouti-related protein 2 gene is an ohnolog gone missing from the tetrapod genome , 2011, Proceedings of the National Academy of Sciences.
[42] M. Herbin,et al. An updated inventory of all known specimens of the coelacanth, Latimeria spp. , 2011 .
[43] O. Lichtarge,et al. Molecular defects in human carbamoy phosphate synthetase I: mutational spectrum, diagnostic and protein structure considerations , 2011, Human mutation.
[44] Sergei L. Kosakovsky Pond,et al. A random effects branch-site model for detecting episodic diversifying selection. , 2011, Molecular biology and evolution.
[45] Wouter de Laat,et al. A Regulatory Archipelago Controls Hox Genes Transcription in Digits , 2011, Cell.
[46] Xiaobo Yu,et al. Earliest known coelacanth skull extends the range of anatomically modern coelacanths to the Early Devonian , 2012, Nature Communications.
[47] Alex A. Pollen,et al. The genomic basis of adaptive evolution in threespine sticklebacks , 2012, Nature.
[48] C. Amemiya,et al. A living fossil in the genome of a living fossil: Harbinger transposons in the coelacanth genome. , 2012, Molecular biology and evolution.
[49] M. A. Biscotti,et al. Composition and phylogenetic analysis of vitellogenin coding sequences in the Indonesian coelacanth Latimeria menadoensis. , 2012, Journal of experimental zoology. Part B, Molecular and developmental evolution.
[50] M. Kmita,et al. Recruitment of 5′ Hoxa genes in the allantois is essential for proper extra-embryonic function in placental mammals , 2012, Development.
[51] F. Di Palma,et al. Analysis of the transcriptome of the Indonesian coelacanth Latimeria menadoensis , 2013, BMC Genomics.